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Sequence Segmentation Task
• Input: a character/word sequence 𝑋!:#

• Output: the most probable segment sequence "𝑆!: $
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Evaluating sequence segmentation 

• Represent the output of sequence segmentation
• a set of tuples {(𝑏%, 𝑒%, 𝑙%)}
• 𝑏%, 𝑒% and 𝑙% represent the beginning index, end index and label 

(if applicable) of a segment
• Metrics

Given a gold output 𝑆& and a system output 𝑆, we can find a 
common subset of segments 𝑆' = 𝑆& ∩ 𝑆.
• precision: 𝑃 = $!

$ :   percentage of segments in 𝑆 that are correct
• recall: 𝑅 = $!

$"
:  percentage of gold segments that are predicted

• F-score: 𝐹 = ()*
)+*

:  combines information on precision and recall



8

• Example:

Input: 南京市里面和米很贵
Gold output 𝑆! : '南京市' , '里' , '面' , '和' , '米' , '很' , '贵' (Length: 7)

System output S: '南京市' , '里面' , '和' , '米' , '很' , '贵' (Length: 6)

Common subset of segments S : '南京市' , '和' , '米' , '很' , '贵' (Length: 5)

Precision: 𝑃 = $!
$
= ,

-
= 0.83

Recall: 𝑅 = $!
$"
== ,

. = 0.71

F-score: 𝐹 = ()*
)+* = 0.77

Evaluating sequence segmentation 
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Segmentation vs Sequence Labelling

• Connections

• Sequence Labelling can be applied to solve sequence segmentation task

• Output form

• segment sequence vs. label sequence

• Transform segmentation into labels.

• e.g., Segment(S) / attach(A) 

### ## #

SAA    SA     S
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• Input:     [我] [吃]    [了] [苹果]
• Output:  我(P) 吃(V)  了(U) 苹果(NN)
• Labels:     P        V          U        NN

Sequence 
Labeling

• Input:    [我] [吃] [了] [苹果]
• Output: [我] [吃 了 苹果]
• Labels:    S      B-VP     I-VP   I-VP   

Sequence 
Segmentation

Segmentation vs Sequence Labelling

• More fine grained tags.

• Combine segmentation label with chunk type.
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Typical label sets

• Word segmentation

• label: B (Beginning), I (Internal), E (Ending) and S (Single-character word)

• Syntactic chunking

• label: {B, I}

• combine syntactic categories: such as B-VP or I-NP

• Named entity recognition

• label: {B-X, I,E, S-X,O}

• X indicates the type of entity: PER (person), LOC (location), ORG 

(organization)

• O: a non-named entity word
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Features templates

• For discriminative models

• 𝑠𝑐𝑜𝑟𝑒 𝑇!:#, 𝑋!:# = 𝜃⃗ ; 𝜙 𝑇!:#, 𝑋!:#

• 𝜙 𝑇!:#, 𝑋!:# = ∑%/!𝜙(𝑡%, 𝑇%01:%0!, 𝑋!:#)

• Feature templates --- patterns. (e.g., 𝑤%𝑡%)

• Feature instances

• matching templates to data.

• Feature vector.     “He visited New Zealand.”

B-LOC   E-LOC

< 0, 0,…, 0, 1, 0,…,0, 1, 0,…,0, …,0, I, 0,…,0 >

𝑤 = New
𝑡 = E-LOC

𝑤 = old
𝑡 = B-PER

𝑤 = New
𝑡 = B-LOC

𝑤 = Zealand
𝑡 = E-LOC
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Features for word segmentation

• 𝑐% represents the 𝑖-th character in the input sequence

• PUNC indicates whether a character is a punctuation or not

• TYPE indicates the category of a character among four predefined 

character classes

• numbers, date time indicators (“年” (year), “月” (month), “日” (day) 

“时” (hour) “分” (minute) and “秒” (second)), English letters and other 

characters.

All combine with 𝑡"
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Example

Input: 其中外企6个

𝑐% =	𝑐> =‘企’,	𝑡> =‘B'

All combine 
with “B”
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Features for syntactic chunking

• Template	1-5	all	combine	with	𝑡%
• 𝑤% indicates the 𝑖-th input word

• 𝑝% indicates the POS tag of the 𝑖-th word

• 𝑡%indicates the 𝑖-th output segmentation label

• Output tag-tag transition features 𝑡%0! 𝑡% are useful for syntactic chunking

e.g. previous chunking label is I-VP, the probability of the next label being 

I-VP or B-NP can be relatively higher.
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Input: Mary went to Chicago to meet her boyfriend John Smith.

𝑤% = 𝑤- =‘meet’.	𝑡- =‘B-VP’

Features for syntactic chunking

All combine 
with “B-VP”
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Features for NER

• Word shape

• Simplify the word form to reduce sparsity 

• X/x: upper/lower case letters, d: numerical digits

• Shape(𝑤! = “ELMo”) = “XXXx”, shortshape( 𝑤! =“ELMo”)=Xx.

• Gazetteer features

• whether the current word exists in a list of known person names, geolocation names, 

organization names etc.

• useful for restricted domains

All combine 
with “𝑡"”
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Input: Mary went to Chicago to meet her boyfriend John Smith.

𝑤" = 𝑤# =‘Chicago’,	𝑡# =‘B-LOC’

Features for NER

All combine 
with “B-LOC”
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Problem of Segmentation by Sequence 
Labelling

Feature vector is the key to discriminative models.

For efficient decoding and training, sequence labelling models assume 

Markov properties over output label sequences

• A second-order Markov model allows features to be defined over three

consecutive segmentation labels

• But segment level features can be beyond label n-grams. There can be 

words with than three characters. For example, “the previous word = 萧

规曹随(to follow convention)” cannot be directly modeled.
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Directly Modeling for Segmentation

Model sequence segmentation directly using discriminative structured 

predictors, which score output sequences  with segment-level features

• As extensions to discriminative sequence labelers for a different output 

structure – sequence segmentation

• We consider discriminative models in this chapter.

• Three aspects to discuss in detail

• segment-level feature definitions

• decoding

• training
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Word-Level Features for Word Segmentation

• Take Chinese word segmentation as an example task

• Suppose that features are defined within two consecutive words, 

or a word bigram

• For an input sentence 𝐶!:# = 𝑐!𝑐(…𝑐#, a segmented output can be 

denoted as 𝑊!: ? = 𝑤!𝑤(…𝑤?

• 𝑤@ = 𝑐A @ 𝑐A @ +!…𝑐B @

• 𝑏(𝑗) and 𝑒(𝑗) denote the character indices for the first and last 

characters in the word 𝑤@
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Word-Level Features for Word Segmentation

• E.g., 我昨天打球了 𝑤( =昨天, 𝑏 2 = 2, 𝑒 2 = 3

• Global feature vector ϕ 𝑊!: ? can be extracted by accumulating local 

features ϕ 𝑤@0!, 𝑤@ over all word bigrams 𝑤@0!𝑤@ in the output sequence:

ϕ 𝑊!: ? =a
@/(

?

ϕ 𝑤@0!, 𝑤@

• ϕ 𝑤@0!, 𝑤@ ≡ ϕC 𝐶!:#, 𝑏 𝑗 − 1 , 𝑒 𝑗 − 1 , 𝑒 𝑗
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Word-Level Features for Word Segmentation
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Example

• Input: <s> 我吃了苹果 </s>

Feature Entry
𝜙 (𝑤!"#, 𝑤!)

Feature Vector

𝜙 (𝑤$, 𝑤#) 0, 0, …, 𝑓%$ 𝑤!"#𝑤! = “ < 𝑠 >我” = 1, 
𝑓&$# 𝑤! 𝑖𝑠 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 = 1, …

𝜙 (𝑤#, 𝑤&) 0, 0, …, 𝑓'( 𝑤!"#𝑤! = “我吃” = 1, …, 𝑓&$# 𝑤! 𝑖𝑠 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 =
1, …

𝜙 (𝑤&, 𝑤%) 0, 0, …, 𝑓)# 𝑤!"#𝑤! = “吃了” = 1, …, 𝑓&$# 𝑤! 𝑖𝑠 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 =
1, … 

𝜙 (𝑤%, 𝑤') 0, 0, …, 𝑓'(& 𝑤!"#𝑤! = “了苹果” = 1, …

𝜙 (𝑤', 𝑤)) 0, 0, …, 𝑓)$# 𝑤!"#𝑤! = “苹果 </𝑠 > ” = 1, …

𝜙 (𝑊#:') 0, 0, …, 𝑓%$ 𝑤!"#𝑤! = “ < 𝑠 >我” = 1, …, 𝑓'( 𝑤!"#𝑤! = “我吃” = 1, …,  
𝑓)# 𝑤!"#𝑤! = “吃了” = 1, …, 𝑓&$# 𝑤! 𝑖𝑠 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 = 3, …, 
𝑓'(& 𝑤!"#𝑤! = “了 苹果” = 1, …, 𝑓)$# 𝑤!"#𝑤! 𝑖𝑠 “苹果 </𝑠 > ” = 1, …



28

Contents
• 9.1 Sequence Segmentation 

• 9.1.1 Evaluating Sequence Segmentation outputs 

• 9.1.2 Sequence Labelling method for Sequence Segmentation

• 9.2 Discriminative Models for Sequence Segmentation

• 9.2.1 Word-Level Features for Word Segmentation

• 9.2.2 Exact Search Decoding Using Dynamic Program

• 9.2.3 Semi-Markov Conditional Random Fields

• 9.2.4 Large Margin Models

• 9.3 Perceptron and Beam Search

• 9.4 Summary



29

Discriminative linear models for 
sequence segmentation

• Use word segmentation for example

• A discriminative linear model to score different segmentation outputs 

𝐶!:# given an input 𝑊!: D , according to the feature representation ϕ 𝑊!: D

• 𝑆𝑐𝑜𝑟𝑒 𝑊!: D = θ ⋅ ϕ 𝑊!: D

• Two discriminative linear model instances

• log-linear models (semi-CRF)

• large margin models (SVM, perceptron)

• Decoding uses the same algorithms
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Decoding
• 𝐶!:#: an input sentence 

• 𝑊!: D : an output segmentation

• The goal of decoding is to find the highest-scored output f𝑊 according to a given 

model θ:

f𝑊 = 𝑎𝑟𝑔𝑚𝑎𝑥Dθ ⋅ ϕ 𝑊

• Assume that features are extracted from word bigrams

θ ⋅ ϕ 𝑊": $ = θ ⋅ I
%&'

(

ϕ 𝑤%)", 𝑤% =I
%&'

(

θ ⋅ ϕ 𝑤%)", 𝑤% =I
%&'

(

θ ⋅ ϕ* 𝐶":+, 𝑏 𝑗 − 1 , 𝑒 𝑗 − 1 , 𝑒 𝑗

• Score can be computed incrementally adding word by word



• Denote a word sequence with the last word being 𝐶A:B as W(b, e).

• the highest scored output sequence with the last word being 𝐶A:B as f𝑊 𝑏, 𝑒 .

• Suppose that the second last word in f𝑊(𝑏, 𝑒) is 𝐶A#:A0!
• Then the subsequence in f𝑊(𝑏, 𝑒) that ends with 𝑐A0! must be the highest-

scored among all segmentation sequences that end with 𝐶A#:A0!, namely 
f𝑊 𝑏Q, 𝑏 − 1 .

• Therefore a table can be built for f𝑊(𝑏, 𝑒) incrementally.
31

Decoding

R𝑊 𝑏,, 𝑏 − 1

R𝑊(𝑏, 𝑒)

𝐶" 𝐶-, 𝐶-)" 𝐶- 𝐶.
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Decoding

The incremental nature of the score calculation results in the availability of 

optimal sub problems (DP):

𝑠𝑐𝑜𝑟𝑒 f𝑊 𝑏, 𝑒

= 𝑎𝑟𝑔𝑚𝑎𝑥!UA#UA0! 𝑠𝑐𝑜𝑟𝑒( f𝑊 𝑏Q, 𝑏 − 1 ) + θ ⋅ ϕC 𝐶!:#, 𝑏Q, 𝑏 − 1, 𝑒

• f𝑊 𝑏, 𝑒 denotes the highest-scored partial output with the last word being 

CA:B = 𝑐A, 𝑐A+!…𝑐B
• the beginning character index 𝑏 ∈ 1…𝑛

• the ending character index 𝑒 ∈ 𝑏…𝑛 .
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Decoding

𝑠𝑐𝑜𝑟𝑒 f𝑊 𝑏, 𝑒 = 𝑎𝑟𝑔𝑚𝑎𝑥!UA#UA0! 𝑠𝑐𝑜𝑟𝑒( f𝑊 𝑏Q, 𝑏 − 1 ) + θ ⋅ ϕC 𝐶!:#, 𝑏Q, 𝑏 − 1, 𝑒

• Use table to store 𝑠𝑐𝑜𝑟𝑒( f𝑊(𝑏, 𝑒)) for all 𝑏 ∈ 1,… , 𝑛 , 𝑒 ∈ [𝑏, … , 𝑛]

• Use bp to store 𝑎𝑟𝑔𝑚𝑎𝑥A# .

• Both 𝑛×𝑛 in size.

• The final highest-scored output:

f𝑊 = 𝑎𝑟𝑔𝑚𝑎𝑥A∈ !…# 𝑠𝑐𝑜𝑟𝑒 f𝑊 𝑏, 𝑛
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Decoding

下

天

前 前天

以 以前 以前天

1 2 3 4 ……

1

2

3

4

…
…

以_前



35

Decoding

• The complexity is O(𝑛$), due to the enumeration of e, b and b'

• Force a maximum word size M: linear time complexity
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Semi-Markov Conditional Random Fields

• Semi-CRF is a log-linear model for sequence segmentation, which gives a 

probability interpretation to the scores assigned to segmented output 

structures.

𝑃 𝑊 𝐶 =
exp θ ⋅ ϕ 𝑊

∑(!∈012 3 exp θ ⋅ ϕ 𝑊,

GEN(𝐶) denotes all possible segmented outputs of 𝐶

• We discuss below:

• Calculating marginal probabilities

• Training a CRF model
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Calculating Marginal Probabilities

• Given an input 𝐶!:#, denote the probability of 𝐶A:B = 𝑐A𝑐A+!…𝑐B
being a word as 𝑃 𝑊𝑅𝐷 𝐶A:B 𝐶!:# , where 𝑊𝑅𝐷 𝐶A:B indicates that 

𝐶A:B is a word in the sentence.

• We want to estimate 𝑃 𝑊𝑅𝐷 𝐶A:B 𝐶!:#

𝑃 𝑊𝑅𝐷 𝐶%:' 𝐶(:) = :
*∈,-. /+:, ,/-:.∈*

𝑃 𝑊 𝐶(:)

• 𝑊 ∈ 𝐺𝐸𝑁 𝐶!:# , 𝐶A:B ∈ 𝑊denotes all possible segmentations of 𝐶!:#
that contain the word 𝐶A:B

• An exponential number of summations
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Calculating Marginal Probabilities

Since features are local to word bigrams, we have

𝑃 𝑊 𝐶(:) =
exp θ ⋅ ϕ 𝑊

𝑍

=
exp θ ⋅ ∑1ϕ 𝑤12(, 𝑤1

𝑍

=
∏1 exp θ ⋅ ϕ 𝑤12(, 𝑤1

𝑍

where 𝑍 is the partition function ∑? exp θ ⋅ ϕ 𝑊 .
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Calculating Marginal Probabilities

𝑃 𝑊𝑅𝐷 𝐶-:. 𝐶":+ = I
(∈456 3":$ ,*%:&∈(

1
𝑍

_
%&": (

exp θ ⋅ ϕ 𝑤%)", 𝑤%

𝐶8 𝐶.𝐶" 𝐶+

α

β
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Calculating Marginal Probabilities

• For 𝑊b = 𝑤!b , 𝑤(b , … , 𝑤?$
b , 𝑤|?$|

b = 𝐶A:B

• For 𝑊d = 𝑤!d, 𝑤(d, … , 𝑤?%
d ,  𝑤!d = 𝐶A:B

• cuts the full summation into the product of two components, with 

the splitting point at (𝑏, 𝑒).

⟹ 𝛼(𝑏, 𝑒)

⟹ 𝛽(𝑏, 𝑒)
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Calculating Marginal Probabilities

• 𝐶A:B = 𝐶e:>
• It's similar to Forward-Backward Algorithm in CRF

𝛽
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Forward Algorithm for semi-CRF

• For the first component

α 𝑏3, 𝑒3 = ∑*/∈,-. /+:.0 ,/-0:.0∈*/∏14(
*/

exp θ ⋅ ϕ 𝑤12(5 , 𝑤15 =

∑%00∈ (…%02( ∑7.∈,-. /+:.0 ,/-00:-01+∈7.∏14(
7.

exp L𝜃 N O𝜙 𝑤12(5 , 𝑤15 = 𝐶%00,%02( N exp L𝜃 N O𝜙 𝐶%00,%02(, 𝐶%0,'

• α 𝑏Q, 𝑒Q can be calculated incrementally by summing up relevant values regarding 

α 𝑏QQ, 𝑏Q − 1 for all valid 𝑏QQ :

α 𝑏3, 𝑒3 = :
%00∈ (…%02(

α 𝑏33, 𝑏3 − 1 ⋅ exp θ ⋅ ϕ8 𝐶(:', 𝑏33, 𝑏3 − 1, 𝑒3

where 𝑏Q ∈ 1,… , 𝑒 , 𝑒Q ∈ 𝑏Q, … , 𝑒
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Forward Algorithm for semi-CRF

α 𝑏3, 𝑒3 = :
%00∈ (…%02(

α 𝑏33, 𝑏3 − 1 ⋅ exp θ ⋅ ϕ8 𝐶(:', 𝑏33, 𝑏3 − 1, 𝑒3

where 𝑏3 ∈ 1,… , 𝑒 , 𝑒3 ∈ 𝑏3, … , 𝑒

α -!,.!

α-!!,8!)"

𝑏33 ∈ [1, … , 𝑏3 − 1]
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Forward Algorithm for semi-CRF

• Starting from boundary values 

α 1, 𝑒Q = exp θ ⋅ ϕC 𝐶!:B, 0,0, 𝑒Q for 𝑒Q ∈ 1,… , 𝑒 ,
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Backward Algorithm for semi-CRF
• For the second component

β 𝑏Q, 𝑒Q = a
?%∈fgh i&#:( ,i&#:)#∈?%

y
@/!

?% 0!

exp θ ⋅ ϕ 𝑤@d, 𝑤@+!d

• β 𝑏Q, 𝑒Q can be calculated incrementally by summing up relevant values 

from all β 𝑒Q + 1, 𝑒QQ , where 𝑒QQ ∈ 𝑒Q + 1,… , 𝑛

β 𝑏Q, 𝑒Q = a
B##∈ B#+!,…,#

β 𝑒Q + 1, 𝑒QQ ⋅ exp θ ⋅ ϕC 𝐶B+!:#, 𝑏Q, 𝑒Q, 𝑒QQ

where 𝑏Q ∈ 𝑒 + 1,… , 𝑛 , 𝑒Q ∈ 𝑒 + 1,… , 𝑛 .  
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Backward Algorithm for semi-CRF

• Starting from boundary values 

β 𝑏Q, 𝑛 = 1
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Calculating Marginal Probabilities

• After obtaining α 𝑏Q, 𝑒Q and β 𝑏Q, 𝑒Q values, 𝑃 𝑊𝑅𝐷 𝐶A:B 𝐶!:#
can be calculated as:

1
𝑍
α 𝑏, 𝑒 β 𝑏, 𝑒
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• Partition	Function

𝑍 =a
D

exp( }𝜃 ; }𝜙(𝑤))

• Can use a dynamic program, similar to the decoding algorithm, but 

with 𝑚𝑎𝑥 being replaced by 𝑠𝑢𝑚.

Partition function for semi-CRF



50

Partition function for semi-CRF

• Log sum exp trick can be used to avoid numeric overflow.



51

Contents
• 9.1 Sequence Segmentation 

• 9.1.1 Evaluating Sequence Segmentation outputs 

• 9.1.2 Sequence Labelling method for Sequence Segmentation

• 9.2 Discriminative Models for Sequence Segmentation

• 9.2.1 Word-Level Features for Word Segmentation

• 9.2.2 Exact Search Decoding Using Dynamic Program

• 9.2.3 Semi-Markov Conditional Random Fields

• 9.2.4 Large Margin Models

• 9.3 Perceptron and Beam Search

• 9.4 Summary



52

Training semi-CRF

Given a set of training data 𝐷 = { 𝐶%,𝑊% }|%/!# , where 𝐶% is a sentence and 

𝑊% is its corresponding gold-standard segmentation, the semi-CRF 

training objective is to maximize the log-likelihood of 𝐷:

!θ = 𝑎𝑟𝑔𝑚𝑎𝑥; log 𝑃 𝐷

= 𝑎𝑟𝑔𝑚𝑎𝑥;∑< log 𝑃 𝑊< 𝐶<

= 𝑎𝑟𝑔𝑚𝑎𝑥;∑< log
=>? ;⋅A B9,C9

∑:;∈<=> : =>? ;⋅A B;,C9

= 𝑎𝑟𝑔𝑚𝑎𝑥;∑< θ ⋅ ϕ 𝑊< , 𝐶< − log ∑B;∈FGH B9
exp θ ⋅ ϕ 𝑊I, 𝐶<
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Local gradient
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Local gradient

• For each training example, the local gradient with respect to θ is:

ϕ 𝑊%, 𝐶% −
∑*# jkl m⋅n ?#,i+ ⋅n ?#,i+

∑*## jkl m⋅n ?##,i+

= ϕ 𝑊%, 𝐶% − ∑?# 𝑃 𝑊Q 𝐶% ϕ 𝑊Q, 𝐶% , defini&on of 𝑃 𝑊Q 𝐶%

• The major challenge is the summation of exponential possible outputs.
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Local gradient

• Similar to CRF, rely on feature locality.

Taking word segmentation for example:

a
?#

𝑃 𝑊Q 𝐶% ϕ 𝑊Q, 𝐶% = a
?#∈fgh i+

𝑃 𝑊Q 𝐶% a
@/!

?#

ϕ 𝑤@0!, 𝑤@

= 𝐸?#∼) 𝑊Q 𝐶% a
@/!

?#

ϕ 𝑤@0!, 𝑤@
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Solution: feature locality

• We can rewrite ∑?# 𝑃 𝑊Q 𝐶% as:

• 𝐸?#∼) 𝑊Q 𝐶% ∑@/!
?#

ϕ 𝑤@0!, 𝑤@

= 𝐸?#∼) 𝑊Q 𝐶% ∑i&#:&,-∈?#,i&:)∈?#ϕC 𝐶%, 𝑏Q, 𝑏 − 1, 𝑒

= a
A#,A,B

𝐸i&#:&,- i&:)∼)(pqrstuvw(A#,A0!,B)|i+)ϕC 𝐶%, 𝑏
Q, 𝑏 − 1, 𝑒

• GENBIGRAM represents the set of all bigrams in all possible 

segmentations of 𝐶%
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Solution: feature locality

• Equal to the sum of the feature vectors weighed by the marginal 

probability of the bigram: 𝑃(IsBigram(𝑏Q, 𝑏 − 1, 𝑒)|𝐶%)ϕC 𝐶%, 𝑏Q, 𝑏 − 1, 𝑒

• Thus, the task boils down to the calculation of the marginal probabilities 

𝑃 𝐵𝐼𝐺𝑅𝐴𝑀 𝑏Q, 𝑏 − 1, 𝑒 𝐶% efficiently for all valid values of 𝑏Q, 𝑏 and 𝑒
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Solution: feature locality
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Solution: feature locality

• For 𝑊b, we have 𝑊?$0!
b = 𝐶A#:A0!, and for 𝑊d, we have 𝑤!d = 𝐶A:B
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Solution: feature locality

𝑃 𝐵𝐼𝐺𝑅𝐴𝑀 𝑏Q, 𝑏 − 1, 𝑒 𝐶% can be computed efficiently using 

Forward-Backward technique 

𝑃 𝐵𝐼𝐺𝑅𝐴𝑀 𝑏Q, 𝑏 − 1, 𝑒 𝐶%

=
α 𝑏Q, 𝑏 − 1 β 𝑏, 𝑒 exp θ ⋅ ϕC 𝐶%, 𝑏Q, 𝑏 − 1, 𝑒

𝑍



61

Forward Backward Algorithm for training 
semi-CRF
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• Partition	Function

𝑍 =a
D

exp( }𝜃 ; }𝜙(𝑤))

• Can use a dynamic program, similar to the decoding 

algorithm, but with 𝑚𝑎𝑥 being replaced by 𝑠𝑢𝑚.

Forward Backward Algorithm for training 
semi-CRF
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Partition function for semi-CRF

• Log sum exp trick can be used to avoid numeric overflow.
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Large Margin Models

• Scoring 

• 𝑠𝑐𝑜𝑟𝑒 𝑆 = θ ⋅ ϕ 𝑆

• Decoding: same as semi-CRF
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Large Margin Models

• Scoring 

• 𝑠𝑐𝑜𝑟𝑒 𝑆 = θ ⋅ ϕ 𝑆

• Decoding: same as semi-CRF

• Training

• largely the same as those for sequence labelling

• structure perceptron ∑%/!h max 0,max
$#

θ ⋅ ϕ 𝑆Q − θ ⋅ ϕ 𝑆%

• structured SVM

1
2

θ
(
+ 𝐶 a

%/!

h

max 0,1 − θ ⋅ ϕ 𝑆% + max
$#x$+

θ ⋅ ϕ 𝑆Q
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Large Margin Models
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Segment-level features

• Pros

• offer a wider context range 

• a direct source of information about the output structures

• Cons

• feature sparsity

• For syntactic chunking, a possible noun phrase can span over tens of words.

• decoding inefficiency

• using segment bigram feature: O(𝑛e)

• using segment trigram features: O(𝑛>)
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Segment-level features

• Pros

• offer a wider context range 

• a direct source of information about the output structures

• Cons

• feature sparsity

• For syntactic chunking, a possible noun phrase can span over tens of words.

• decoding inefficiency

• using segment bigram feature: O(𝒏𝟑)

• using segment trigram features: O(𝒏𝟒)
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Solution: beam search

• Model can use arbitrary features without Markov assumptions

• Inexact search to accommodate feature context

• Incrementally processes the input sequence from left to right, 

building the output structure in linear time.

• Tradeoff between optimality and efficiency.



72

Beam Search Decoding

Given an input sentence 𝑊!:#, the algorithm incrementally builds partial 

output candidates 𝑇!:% from left to right, using an agenda to maintain the 𝑘

highest scored partial output at each step.

• Each candidate is a partial output 𝑇!:%.

• Starting from an initial agenda with an empty sequence

• At each step, enumerate all possible local structures concerning the 

current word to generate new partial output candidates

• Score each candidate and leave top-k candidates for next step

• Repeats until the end of the sentence, the top-1 left is taken for output 
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An Example of Beam Search

𝐶":? = 西 班 牙 足 球
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Beam Search Decoding Algorithm
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Relaxing feature locality constraints

At each step, we should score partial outputs from the beginning of the 

sentence until the current word being processed

• At the 𝑖-th incremental step, the feature vector for the partial output 𝑇!:%
is built incrementally from the previous step:

ϕ 𝑊!:#, 𝑇!:% = ϕ 𝑊!:#, 𝑇!:%0! + ϕ{ 𝑊!:#, 𝑇!:%0!, 𝑡%

• ϕ{ 𝑊!:#, 𝑇!:%0!, 𝑡% indicates the incremental feature vector that consists 

of the partial structures concerning 𝑡%
• Differences from the incremental feature for sequence labeling 

ϕ 𝑊!:#, 𝑇|01:%0!, 𝑡%

• no Markov restriction on the label context 
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Beam Search

• Problems

• highest model score is not guaranteed to be found by the decoder.

• Solution

• adjust the training objective into the minimization of search errors.

• Merge model error and search error into one single objective.
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Perceptron Training for Guiding Beam-
search Decoding
• Basic idea

• Use the current model parameter θ to decode training instances by beam search

• If the model makes a mistake, update θ

• Two types of updates

• At the 𝑖-th step, the gold local structure sequence 𝐺!:% falls out of agenda/beam

• The highest-scored output �𝑇!:# has a higher score compared with 𝐺!:#
• Update method

• Standard perceptron algorithm 

• Mistake 1: 𝐺!:% (positive example), �𝑇!:% (negative example)

• Mistake 2: 𝐺!:# (positive example), �𝑇!:# (negative example)
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Beam Search Training Algorithm
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Beam Search Training Algorithm
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Summary

• Sequence segmentation using Sequence Labeling

• Discriminative models for directly solving sequence segmentation tasks

• Semi-Markov Conditional Random Fields

• A learning guided beam search framework using perceptron training


