

Natural Language Processing

Yue Zhang Westlake University

Chapter 9

Sequence Segmentation

- 9.1 Sequence Segmentation
 - 9.1.1 Evaluating Sequence Segmentation Outputs
 - 9.1.2 Sequence Labelling Method for Sequence Segmentation
- 9.2 Discriminative Models for Sequence Segmentation
 - 9.2.1 Word-Level Features for Word Segmentation
 - 9.2.2 Exact Search Decoding Using Dynamic Program
 - 9.2.3 Semi-Markov Conditional Random Fields
 - 9.2.4 Large Margin Models
- 9.3 Perceptron and Beam Search
- 9.4 Summary

- 9.1 Sequence Segmentation
 - 9.1.1 Evaluating Sequence Segmentation Outputs
 - 9.1.2 Sequence Labelling Method for Sequence Segmentation
- 9.2 Discriminative Models for Sequence Segmentation
 - 9.2.1 Word-Level Features for Word Segmentation
 - 9.2.2 Exact Search Decoding Using Dynamic Program
 - 9.2.3 Semi-Markov Conditional Random Fields
 - 9.2.4 Large Margin Models
- 9.3 Perceptron and Beam Search
- 9.4 Summary

Sequence Segmentation Task

- Input: a character / word sequence $X_{1:n}$
- Output: the most probable segment sequence $\widehat{S_{1:|S|}}$

Word	Input	那几年,南京市里面和米很贵
segmentation	Output	那(Those) 几(few) 年(years),南京市(Nanjing City) 里(in) 面(flour) 和(and) 米(rice) 很(very) 贵(expensive)
	Labels	SSSSBMESSSSSS
	Input	Mary went to Chicago to meet her boyfriend
Syntactic	mput	John Smith.
chunking	Output	$[Mary]_{NP}$ $[went]_{VP}$ $[to]_{PP}$ $[Chicago]_{NP}$ $[to]_{PP}$ $[meet]_{VP}$
	Output	[her boyfriend John Smith] _{NP} .
	Labels	B-NP B-VP B-PP B-NP B-PP B-VP
		B-NP I-NP I-NP I-NP
Namod	Input	Mary went to Chicago to meet her boyfriend
ontity	mput	John Smith.
recognition	Output	$[Mary]_{PER}$ went to $[Chicago]_{LOC}$ to meet her boyfriend
recognition	Output	$[$ John Smith $]_{PER}$.
	Labels	B-PER O O B-LOC O O O O B-PER I-PER

- 9.1 Sequence Segmentation
 - 9.1.1 Evaluating Sequence Segmentation Outputs
 - 9.1.2 Sequence Labelling Method for Sequence Segmentation
- 9.2 Discriminative Models for Sequence Segmentation
 - 9.2.1 Word-Level Features for Word Segmentation
 - 9.2.2 Exact Search Decoding Using Dynamic Program
 - 9.2.3 Semi-Markov Conditional Random Fields
 - 9.2.4 Large Margin Models
- 9.3 Perceptron and Beam Search
- 9.4 Summary

Evaluating sequence segmentation

- Represent the output of sequence segmentation
 - a set of tuples $\{(b_i, e_i, l_i)\}$
 - *b_i*, *e_i* and *l_i* represent the beginning index, end index and label
 (if applicable) of a segment
- Metrics

Given a gold output S_g and a system output S, we can find a common subset of segments $S_m = S_g \cap S$.

- precision: $P = \frac{S_m}{S}$: percentage of segments in *S* that are correct
- recall: $R = \frac{S_m}{S_g}$: percentage of gold segments that are predicted
- F-score: $F = \frac{2PR}{P+R}$: combines information on precision and recall

Evaluating sequence segmentation

• Example:

Input: 南京市里面和米很贵
Gold output S_g: '南京市', '里', '面', '和', '米', '很', '贵' (Length: 7)
System output S: '南京市', '里面', '和', '米', '很', '贵' (Length: 6)
Common subset of segments S: '南京市', '和', '米', '很', '贵' (Length: 5)

Precision:
$$P = \frac{S_m}{S} = \frac{5}{6} = 0.83$$

Recall: $R = \frac{S_m}{S_g} = \frac{5}{7} = 0.71$
F-score: $F = \frac{2PR}{S_g} = 0.77$

P+R

- 9.1 Sequence Segmentation
 - 9.1.1 Evaluating Sequence Segmentation Outputs
 - 9.1.2 Sequence Labelling Method for Sequence Segmentation
- 9.2 Discriminative Models for Sequence Segmentation
 - 9.2.1 Word-Level Features for Word Segmentation
 - 9.2.2 Exact Search Decoding Using Dynamic Program
 - 9.2.3 Semi-Markov Conditional Random Fields
 - 9.2.4 Large Margin Models
- 9.3 Perceptron and Beam Search
- 9.4 Summary

Segmentation vs Sequence Labelling

- Connections
 - Sequence Labelling can be applied to solve sequence segmentation task
 - Output form
 - segment sequence vs. label sequence
 - Transform segmentation into labels.
 - e.g., Segment(S) / attach(A)
 - ### ## #
 - SAA SA S

Segmentation vs Sequence Labelling

- More fine grained tags.
- Combine segmentation label with chunk type.

Typical label sets

- Word segmentation
 - label: **B** (Beginning), **I** (Internal), **E** (Ending) and **S** (Single-character word)
- Syntactic chunking
 - label: {<mark>B</mark>, <mark>I</mark>}
 - combine syntactic categories: such as B-VP or I-NP
- Named entity recognition
 - label: {<mark>B-X</mark>, <mark>I,E</mark>, <mark>S-X,O</mark>}
 - X indicates the type of entity: <u>PER</u> (person), <u>LOC</u> (location), <u>ORG</u> (organization)
 - O: a non-named entity word

Features templates

WestlakeNLP

- For discriminative models
 - $score(T_{1:n}, X_{1:n}) = \vec{\theta} \cdot \vec{\phi}(T_{1:n}, X_{1:n})$

•
$$\vec{\phi}(T_{1:n}, X_{1:n}) = \sum_{i=1} \vec{\phi}(t_i, T_{i-k:i-1}, X_{1:n})$$

- Feature templates --- patterns. (e.g., $w_i t_i$)
- Feature instances
 - matching templates to data.
- Feature vector. "He visited New Zealand."

B-LOC E-LOC

$$< 0, 0, ..., 0, 1, 0, ..., 0, 1, 0, ..., 0, ..., 0, I, 0, ..., 0 >$$

 $w = New$ $w = New$ $w = old$ $w = Zealand$
 $t = E-LOC$ $t = B-LOC$ $t = B-PER$ $t = E-LOC$

Features for word segmentation

ID	Feature templates	ID	Feature templates		
1	c_{i-1}, c_i, c_{i+1}	4	$c_{i-1}c_ic_{i+1}$		
2	$c_{i-1}c_i, c_ic_{i+1}$	5	$PUNC(c_i)$		\succ All combine with t_i
3	$c_{i-1}c_{i+1}$	6	$TYPE(c_{i-1})TYPE(c_i)TYPE(c_{i+1})$	ر	

- *c_i* represents the *i*-th character in the input sequence
- **PUNC** indicates whether a character is a punctuation or not
- **TYPE** indicates the category of a character among four predefined character classes
 - numbers, date time indicators ("年" (year), "月" (month), "日" (day)
 "时" (hour) "分" (minute) and "秒" (second)), English letters and other

characters.

Example

WestlakeNLP

Input: 其中外企6个 c_i = c₄ ='企', t₄ ='B'

ID	Feature Templates	Feature Instances			
1	c_{i-1},c_i,c_{i+1}	'外', '企', '6')		
2	$c_{i-1}c_i,c_ic_{i+1}$	'外企', '企6'			
3	$c_{i-1}c_{i+1}$	'外6'		>	All combine
4	$c_{i-1}c_ic_{i+1}$	'外企6'		•	WILLI D
5	$PUNC(c_i)$	False			
6	$TYPE(c_{i-1})TYPE(c_i)TYPE(c_{i+1})$	'OTHER' 'OTHER' 'NUMBER'	J		

Features for syntactic chunking

ID	Feature templates	ID	Feature templates
1	$w_{i-2}, w_{i-1}, w_i, w_{i+1}, w_{i+2}$	4	$p_{i-1}p_i, p_ip_{i+1}, p_{i-1}p_{i+1}$
2	$p_{i-2}, p_{i-1}, p_i, p_{i+1}, p_{i+2}$	5	$w_{i-1}p_{i-1}, w_ip_i, w_{i+1}p_{i+1}$
3	$w_{i-1}w_i, w_iw_{i+1}, w_{i-1}w_{i+1}$	6	$t_{i-1}t_i$

- Template 1-5 all combine with t_i
- *w_i* indicates the *i*-th input word
- p_i indicates the POS tag of the *i*-th word
- *t_i*indicates the *i*-th output segmentation label
- Output tag-tag transition features t_{i-1} t_i are useful for syntactic chunking e.g. previous chunking label is I-VP, the probability of the next label being I-VP or B-NP can be relatively higher.

Features for syntactic chunking

Input: Mary went to Chicago to **meet** her boyfriend John Smith. $w_i = w_6 =$ '**meet**'. $t_6 =$ '**B-VP**'

ID	Feature Templates	Feature Instances	_	
1	w_{i-2} , w_{i-1} , w_i , w_{i+1} , w_{i+2}	'Chicago', 'to', 'meet', 'her', 'boyfriend'		
2	p_{i-2} , p_{i-1} , p_{i} , p_{i+1} , p_{i+2}	'NNP', 'TO', 'VB', 'PRP\$', 'NN'		. 11 1 .
3	$w_{i-1}w_i$, w_iw_{i+1} , $w_{i-1}w_{i+1}$	'to meet', 'meet her', 'to her'	$\left \right\rangle$	All combine with "B-VP"
4	$p_{i-1}p_{i'}p_ip_{i+1'}p_{i-1}p_{i+1}$	'TO VB', 'VB PRP\$', 'TO PRP\$'		
5	$w_{i-1}p_{i-1}$, w_ip_i , $w_{i+1}p_{i+1}$	'to TO', 'meet VB', 'her PRP\$'		
6	$t_{i-1}t_i$	'B-PP B-VP'	-	

WestlakeNLP

N

Features for NER

VestlakeNLP

textbfID	Feature templates	-		
1	$w_{i-2}, w_{i-1}, w_i, w_{i+1}, w_{i+2}$			
2	$\operatorname{PoS}(w_{i-2}), \operatorname{PoS}(w_{i-1}), \operatorname{PoS}(w_i), \operatorname{PoS}(w_{i+1}), \operatorname{PoS}(w_{i+2})$			Δ11
3	$PREFIX(w_i), SUFFIX(w_i)$			2 XII :(1
4	$CASE(w_i)$			W1ti
5	HYPHEN (w_i)	· ·	\succ	
6	SHAPE (w_{i-2}) , SHAPE (w_{i-1}) , SHAPE (w_i) , SHAPE (w_{i+1}) , SHAPE (w_{i+2})			
7	SHORTSHAPE (w_{i-2}) , SHORTSHAPE (w_{i-1}) , SHORTSHAPE (w_i) ,			
	SHORTSHAPE (w_{i+1}) , SHORTSHAPE (w_{i+1})			
8	$GAZETTEER(w_i)$	J)	

All combine with "*t_i"*

- Word shape
 - Simplify the word form to reduce sparsity
 - X/x: upper/lower case letters, d: numerical digits
 - Shape($w_i = \text{``ELMo''}$) = ''XXXx'', shortshape($w_i = \text{``ELMo''}$)=Xx.
- Gazetteer features
 - whether the current word exists in a list of known person names, geolocation names, organization names etc.
 - useful for restricted domains

Features for NER

Input: Mary went to **Chicago** to meet her boyfriend John Smith. $w_i = w_4 =$ 'Chicago', $t_4 =$ 'B-LOC'

ID	Feature Templates	Feature Instances
1	w_{i-2} , w_{i-1} , w_i , w_{i+1} , w_{i+2}	'went', 'to', 'Chicago', 'to', 'meet'
2	$POS(w_{i-2})$, $POS(w_{i-1})$, $POS(w_i)$, $POS(w_{i+1})$, $POS(w_{i+2})$	'VBD', 'TO', 'NNP', 'TO', 'VB'
3	PREFIX(w_i), SUFFIX(w_i)	"C"/"Ch", "g"/"go"
4	ALL_LOWER_CASE(w_i)	False
5	CONTAINS_HYPHEN(w_i)	False
6	SHAPE(w_{i-2}), SHAPE(w_{i-1}), SHAPE(w_i), SHAPE(w_{i+1}), SHAPE(w_{i+2})	'xxxx', 'xx', 'Xxxxxxx', 'xx', 'xxxx'
7	SHORTSHAPE(w_{i-2}), SHORTSHAPE(w_{i-1}), SHORTSHAPE(w_i), SHORTSHAPE(w_{i+1}), SHORTSHAPE(w_{i+2})	'x', 'x', 'Xx', 'x', 'x'
8	$GAZETTEER(w_i)$	True

All combine with "B-LOC"

- 9.1 Sequence Segmentation
 - 9.1.1 Evaluating Sequence Segmentation outputs
 - 9.1.2 Sequence Labelling method for Sequence Segmentation
- 9.2 Discriminative Models for Sequence Segmentation
 - 9.2.1 Word-Level Features for Word Segmentation
 - 9.2.2 Exact Search Decoding Using Dynamic Program
 - 9.2.3 Semi-Markov Conditional Random Fields
 - 9.2.4 Large Margin Models
- 9.3 Perceptron and Beam Search
- 9.4 Summary

Problem of Segmentation by Sequence Labelling

Feature vector is the key to discriminative models.

For efficient decoding and training, sequence labelling models assume **Markov properties over output label sequences**

- A second-order Markov model allows features to be defined over three consecutive segmentation labels
- But segment level features can be beyond label n-grams. There can be words with than three characters. For example, "the previous word = 萧 规曹随(to follow convention)" cannot be directly modeled.

Directly Modeling for Segmentation

Model sequence segmentation directly using discriminative structured predictors, which score output sequences with segment-level features

- As extensions to discriminative sequence labelers for a different output structure **sequence segmentation**
- We consider discriminative models in this chapter.
- Three aspects to discuss in detail
 - segment-level feature definitions
 - decoding
 - training

- 9.1 Sequence Segmentation
 - 9.1.1 Evaluating Sequence Segmentation outputs
 - 9.1.2 Sequence Labelling method for Sequence Segmentation
- 9.2 Discriminative Models for Sequence Segmentation
 - 9.2.1 Word-Level Features for Word Segmentation
 - 9.2.2 Exact Search Decoding Using Dynamic Program
 - 9.2.3 Semi-Markov Conditional Random Fields
 - 9.2.4 Large Margin Models
- 9.3 Perceptron and Beam Search
- 9.4 Summary

Word-Level Features for Word Segmentation **U** WestlakeNLP

- Take Chinese word segmentation as an example task
- Suppose that features are defined within two consecutive words, or a word bigram
- For an input sentence $C_{1:n} = c_1 c_2 \dots c_n$, a segmented output can be denoted as $W_{1:|W|} = w_1 w_2 \dots w_{|W|}$
 - $w_j = c_{b(j)}c_{b(j)+1} \dots c_{e(j)}$
 - *b*(*j*) and *e*(*j*) denote the character indices for the first and last characters in the word *w_j*

Word-Level Features for Word Segmentation **VestlakeNLP**

• E.g., 我 昨天 打球 了 w₂ = 昨天, b(2) = 2, e(2) = 3

• Global feature vector $\vec{\phi}(W_{1:|W|})$ can be extracted by accumulating local

features $\vec{\phi}(w_{j-1}, w_j)$ over all word bigrams $w_{j-1}w_j$ in the output sequence: $\vec{\phi}(W_{1:|W|}) = \sum_{j=2}^{|W|} \vec{\phi}(w_{j-1}, w_j)$

• $\overrightarrow{\phi}(w_{j-1}, w_j) \equiv \overrightarrow{\phi_c}(C_{1:n}, b(j-1), e(j-1), e(j))$

Word-Level Features for Word Segmentation **VestlakeNLP**

ID	Feature templates	ID	Feature templates
1	word w_j	8	$c_{b(j)}c_{e(j)}$
2	word bigram $w_{j-1}w_j$	9	$w_j c_{e(j)+1}$
3	whether w_j is a single-character word, SINGLE (w_j)	10	$w_j c_{e(j-1)}$
4	$c_{b(j)}$ LEN (w_j)	11	$c_{b(j-1)}c_{b(j)}$
5	$c_{e(j)}$ LEN (w_j)	12	$c_{e(j-1)}c_{e(j)}$
6	space-separated characters, $c_{e(j-1)}c_{b(j)}$	13	$w_j \operatorname{LEN}(w_{j-1})$
7	character bigram in w_j	14	w_{j-1} LEN (w_j)

Example

WestlakeNLP

• Input: <s>我吃了苹果 </s>

Feature Entry $\vec{\phi} (w_{i-1}, w_i)$	Feature Vector
$\vec{\phi}$ (w_0, w_1)	0, 0,, $f_{30}(w_{i-1}w_i = " < s > 我") = 1$, $f_{201}(w_i \text{ is a single character}) = 1$,
$\vec{\phi}(w_1, w_2)$	0, 0,, $f_{47}(w_{i-1}w_i = "我吃") = 1$,, $f_{201}(w_i \text{ is a single character}) = 1$,
$\vec{\phi}(w_2,w_3)$	0, 0,, $f_{51}(w_{i-1}w_i = "吃了") = 1$,, $f_{201}(w_i \text{ is a single character}) = 1$,
$ec{\phi}\left(w_{3},w_{4} ight)$	0, 0,, $f_{472}(w_{i-1}w_i = "了苹果") = 1,$
$ec{\phi}\left(w_4,w_5 ight)$	0, 0,, $f_{501}(w_{i-1}w_i = "苹果 ") = 1,$
$ec{\phi}\left(W_{1:4} ight)$	0, 0,, $f_{30}(w_{i-1}w_i = " < s > 我") = 1$,, $f_{47}(w_{i-1}w_i = "我吃") = 1$,, $f_{51}(w_{i-1}w_i = "吃了") = 1$,, $f_{201}(w_i \text{ is a single character}) = 3$,, $f_{472}(w_{i-1}w_i = "了 苹果") = 1$,, $f_{501}(w_{i-1}w_i \text{ is "苹果 } ") = 1$,

- 9.1 Sequence Segmentation
 - 9.1.1 Evaluating Sequence Segmentation outputs
 - 9.1.2 Sequence Labelling method for Sequence Segmentation
- 9.2 Discriminative Models for Sequence Segmentation
 - 9.2.1 Word-Level Features for Word Segmentation
 - 9.2.2 Exact Search Decoding Using Dynamic Program
 - 9.2.3 Semi-Markov Conditional Random Fields
 - 9.2.4 Large Margin Models
- 9.3 Perceptron and Beam Search
- 9.4 Summary

Discriminative linear models for sequence segmentation

- Use word segmentation for example
- A discriminative linear model to score different segmentation outputs

 $C_{1:n}$ given an input $W_{1:|w|}$, according to the feature representation $\vec{\phi}(W_{1:|w|})$

- $Score(W_{1:|w|}) = \vec{\theta} \cdot \vec{\phi}(W_{1:|w|})$
- Two discriminative linear model instances
 - log-linear models (semi-CRF)
 - large margin models (SVM, perceptron)
 - Decoding uses the same algorithms

WestlakeNLP

- $C_{1:n}$: an input sentence
- $W_{1:|w|}$: an output segmentation
- The goal of decoding is to find the highest-scored output \widehat{W} according to a given model $\overrightarrow{\theta}$:

$$\widehat{W} = argmax_{W}\vec{\theta}\cdot\vec{\phi}(W)$$

• Assume that features are extracted from word bigrams

$$\vec{\theta} \cdot \vec{\phi} (W_{1:|w|}) = \vec{\theta} \cdot \left(\sum_{j=2}^{|W|} \vec{\phi} (w_{j-1}, w_j) \right) = \sum_{j=2}^{|W|} \vec{\theta} \cdot \vec{\phi} (w_{j-1}, w_j) = \sum_{j=2}^{|W|} \vec{\theta} \cdot \vec{\phi}_c (C_{1:n}, b(j-1), e(j-1), e(j))$$

• Score can be computed incrementally adding word by word

VestlakeNLP

- Denote a word sequence with the last word being $C_{b:e}$ as W(b, e).
- the highest scored output sequence with the last word being $C_{b:e}$ as $\widehat{W}(b, e)$.
- Suppose that the second last word in $\widehat{W}(b, e)$ is $C_{b':b-1}$
- Then the subsequence in $\widehat{W}(b, e)$ that ends with c_{b-1} must be the highestscored among all segmentation sequences that end with $C_{b':b-1}$, namely $\widehat{W}(b', b - 1)$.

• Therefore a table can be built for $\widehat{W}(b, e)$ incrementally.

The incremental nature of the score calculation results in the availability of optimal sub problems (DP):

 $score\left(\widehat{W}(b,e)\right)$

$$= argmax_{1 \le b' \le b-1} \left(score(\widehat{\mathcal{W}}(b', b-1)) + \vec{\theta} \cdot \overrightarrow{\varphi_c}(C_{1:n}, b', b-1, e) \right)$$

- $\widehat{W}(b, e)$ denotes the highest-scored partial output with the last word being $C_{b:e} = c_b, c_{b+1} \dots c_e$
- the beginning character index $b \in [1 ... n]$
- the ending character index $e \in [b \dots n]$.

WestlakeNLP

 $score\left(\widehat{W}(b,e)\right) = argmax_{1 \le b' \le b-1}\left(score(\widehat{W}(b',b-1)) + \overrightarrow{\theta} \cdot \overrightarrow{\varphi_c}(C_{1:n},b',b-1,e)\right)$

- Use table to store $score(\widehat{W}(b, e))$ for all $b \in [1, ..., n], e \in [b, ..., n]$
- Use bp to store $argmax_{b'}$.
- Both $n \times n$ in size.
- The final highest-scored output:

$$\widehat{W} = argmax_{b \in [1...n]} score\left(\widehat{W}(b,n)\right)$$

以_前

VestlakeNLP

Input: Sequence $C_{1:n} = c_1 c_2 \dots c_n$, model parameters $\vec{\theta}$; Initialisation: for $e \in [1, ..., n]$ do for $b \in [1, \ldots, e]$ do $\begin{vmatrix} table[b,e] \leftarrow -\infty; \\ bp[b,e] \leftarrow -1; \\ table[1,e] \leftarrow \vec{\theta} \cdot \vec{\phi_c}(C_{1:n},0,0,e); \end{cases}$ Algorithm: for $e \in [2, ..., n]$ do for $b \in [2, \ldots, e]$ do for $b' \in [1, ..., b - 1]$ do $\begin{vmatrix} \mathbf{if} \ table[b', b-1] + \vec{\theta} \cdot \vec{\phi}_c(C_{1:n}, b', b-1, e) > table[b, e] \mathbf{then} \\ table[b, e] \leftarrow table[b', b-1] + \vec{\theta} \cdot \vec{\phi}_c(C_{1:n}, b', b-1, e); \\ bp[b, e] \leftarrow b'; \end{vmatrix}$ $max_score \leftarrow \max_{b'} table[b', n] + \vec{\phi}_c(C_{1:n}, b', n, n+1);$ backtrace with bp; **Output**: Segmented sequence $W_{1:|W|} = w_1 w_2 \dots w_{|W|}$;

- The complexity is $O(n^3)$, due to the enumeration of e, b and b'
- Force a maximum word size M: linear time complexity

- 9.1 Sequence Segmentation
 - 9.1.1 Evaluating Sequence Segmentation outputs
 - 9.1.2 Sequence Labelling method for Sequence Segmentation
- 9.2 Discriminative Models for Sequence Segmentation
 - 9.2.1 Word-Level Features for Word Segmentation
 - 9.2.2 Exact Search Decoding Using Dynamic Program
 - 9.2.3 Semi-Markov Conditional Random Fields
 - 9.2.4 Large Margin Models
- 9.3 Perceptron and Beam Search
- 9.4 Summary
Semi-Markov Conditional Random Fields

 Semi-CRF is a log-linear model for sequence segmentation, which gives a probability interpretation to the scores assigned to segmented output structures.

$$P(W|C) = \frac{\exp\left(\vec{\theta} \cdot \vec{\phi}(W)\right)}{\sum_{W' \in \text{GEN}(C)} \exp\left(\vec{\theta} \cdot \vec{\phi}(W')\right)}$$

GEN(*C*) denotes all possible segmented outputs of *C*

- We discuss below:
 - Calculating marginal probabilities
 - Training a CRF model

WestlakeNLP

- Given an input $C_{1:n}$, denote the probability of $C_{b:e} = c_b c_{b+1} \dots c_e$ being a word as $P(WRD(C_{b:e})|C_{1:n})$, where $WRD(C_{b:e})$ indicates that $C_{b:e}$ is a word in the sentence.
- We want to estimate $P(WRD(C_{b:e})|C_{1:n})$

$$P(WRD(C_{b:e})|C_{1:n}) = \sum_{W \in GEN(C_{1:n}), C_{b:e} \in W} P(W|C_{1:n})$$

- $W \in GEN(C_{1:n}), C_{b:e} \in W$ denotes all possible segmentations of $C_{1:n}$ that contain the word $C_{b:e}$
- An exponential number of summations

WestlakeNLP

VestlakeNLP

Since features are local to word bigrams, we have

$$P(W|C_{1:n}) = \frac{\exp\left(\vec{\theta} \cdot \vec{\phi}(W)\right)}{Z}$$
$$= \frac{\exp\left(\vec{\theta} \cdot \left(\sum_{j} \vec{\phi}(w_{j-1}, w_{j})\right)\right)}{Z}$$
$$\prod_{j} \exp\left(\vec{\theta} \cdot \vec{\phi}(w_{j-1}, w_{j})\right)$$

$$=\frac{\prod_{j}\exp\left(\vec{\theta}\cdot\vec{\phi}(w_{j-1},w_{j})\right)}{Z}$$

where *Z* is the partition function $\sum_{W} \exp\left(\vec{\theta} \cdot \vec{\phi}(W)\right)$.

WestlakeNLP

$$P(WRD(C_{b:e})|C_{1:n}) = \sum_{W \in GEN(C_{1:n}), c_{b:e} \in W} \left(\frac{1}{Z} \prod_{j=1:|W|} \exp\left(\vec{\theta} \cdot \vec{\phi}(w_{j-1}, w_{j})\right)\right)$$

$$P(\text{ISWORD}(C_{b:e})|C_{1:n}) = \sum_{W \in \text{GEN}(C_{1:n}) \text{ such that } c_{b:e} \in W} \left(\frac{1}{Z} \prod_{j=1}^{|W|} \exp\left(\vec{\theta} \cdot \vec{\phi}(w_{j-1}, w_{j})\right) \right)$$

$$= \frac{1}{Z} \left(\sum_{W^{l} \in \text{GEN}(C_{1:e}) \text{ such that } c_{b:e} \in W^{l}} \prod_{j=1}^{|W|} \exp\left(\vec{\theta} \cdot \vec{\phi}(w_{j-1}^{l}, w_{j}^{l})\right) \right) \implies \alpha(b, e)$$

$$\left(\sum_{W^{r} \in \text{GEN}(C_{b:n}) \text{ such that } c_{b:e} \in W^{r}} \prod_{j=1}^{|W^{l}|-1} \exp\left(\vec{\theta} \cdot \vec{\phi}(w_{j}^{r}, w_{j+1}^{r})\right) \right) \implies \beta(b, e)$$
• For $W^{l} = w_{1}^{l}, w_{2}^{l}, \dots, w_{|W^{l}|}^{l}, w_{|W^{l}|}^{l} = C_{b:e}$

• For
$$W^r = w_1^r, w_2^r, \dots, w_{|W^r|}^r, w_1^r = C_{b:e}$$

 cuts the full summation into the product of two components, with the splitting point at (*b*, *e*).

- $C_{b:e} = C_{3:4}$
- It's similar to Forward-Backward Algorithm in CRF

Forward Algorithm for semi-CRF

VestlakeNLP

• For the first component

$$\alpha(b',e') = \sum_{W^l \in GEN(C_{1:e'}), C_{b':e'} \in W^l} \prod_{j=1}^{|W^l|} \exp\left(\vec{\theta} \cdot \vec{\phi}(w_{j-1}^l, w_j^l)\right) =$$

 $\sum_{b'' \in [1...b'-1]} \sum_{w^e \in GEN(C_{1:e'}), C_{b'':b'-1} \in w^e} \prod_{j=1}^{|w^e|} \exp\left(\hat{\theta} \cdot \hat{\phi}(w_{j-1}^l, w_j^l = C_{b'',b'-1})\right) \cdot \exp\left(\hat{\theta} \cdot \hat{\phi}(C_{b'',b'-1}, C_{b',e})\right)$

• $\alpha(b', e')$ can be calculated incrementally by summing up relevant values regarding $\alpha(b'', b' - 1)$ for all valid b'':

$$\alpha(b',e') = \sum_{b'' \in [1\dots b'-1]} \left(\alpha(b'',b'-1) \cdot \exp\left(\vec{\theta} \cdot \vec{\phi_c}(C_{1:e},b'',b'-1,e')\right) \right)$$

where $b' \in [1,\dots,e], e' \in [b',\dots,e]$

Forward Algorithm for semi-CRF

WestlakeNLP

 $b^{\prime\prime} \in [1, \dots, b^{\prime} - 1]$

$$\begin{aligned} \alpha(b',e') &= \sum_{b'' \in [1 \dots b'-1]} \left(\alpha(b'',b'-1) \cdot \exp\left(\vec{\theta} \cdot \overrightarrow{\varphi_c}(C_{1:e},b'',b'-1,e')\right) \right) \\ \text{where } b' \in [1,\dots,e], e' \in [b',\dots,e] \end{aligned}$$

Forward Algorithm for semi-CRF

VestlakeNLP

Inputs: $s = C_{1:e}$, semi-CRF model with feature weight vector $\vec{\theta}$; Variables: α ; Initialisation: for $e' \in [1, \ldots, e]$ do $\alpha[1, e'] \leftarrow \vec{\theta} \cdot \vec{\phi}(C_{1:e}, 0, 0, e');$ Algorithm: for $b \in [2, \ldots, e]$ do for $e \in [b', \ldots, e]$ do $\begin{vmatrix} \alpha[b',e'] \leftarrow 0; \\ \mathbf{for} \ b'' \in [1,\ldots,b'-1] \ \mathbf{do} \\ & | \begin{array}{c} \alpha[b',e'] \leftarrow \\ \alpha[b',e'] \leftarrow \\ \alpha[b',e'] + \alpha[b'',b'-1] \cdot \exp\left(\vec{\theta} \cdot \vec{\phi}_c(C_{1:n},b'',b'-1,e')\right); \end{aligned}$ **Output**: α ;

• Starting from boundary values

$$\alpha(1, e') = \exp\left(\vec{\theta} \cdot \overrightarrow{\phi_c}(C_{1:e}, 0, 0, e')\right) \text{ for } e' \in [1, \dots, e],$$

Backward Algorithm for semi-CRF

46

• For the second component

$$\beta(b',e') = \sum_{W^r \in GEN(C_{b':n}), C_{b':e'} \in W^r} \prod_{j=1}^{|W^r|-1} \exp\left(\vec{\theta} \cdot \vec{\phi}(w_j^r, w_{j+1}^r)\right)$$

• $\beta(b', e')$ can be calculated incrementally by summing up relevant values from all $\beta(e' + 1, e'')$, where $e'' \in [e' + 1, ..., n]$

$$\beta(b',e') = \sum_{e'' \in [e'+1,\dots,n]} \left(\beta(e'+1,e'') \cdot \exp\left(\vec{\theta} \cdot \vec{\phi_c}(C_{e+1:n},b',e',e'')\right) \right)$$

where $b' \in [e+1,\dots,n], e' \in [e+1,\dots,n].$

Backward Algorithm for semi-CRF

Inputs: $s = C_{b:n}$, semi-CRF model with feature weight vector θ ; Variables: β ; **Initialisation:** for $b' \in [n, n - 1, ..., b]$ do $\beta[b',n] \leftarrow 1;$ Algorithm: for $e' \in [n - 1, n - 2, ..., b]$ do for $b' \in [e', e' - 1, ..., b]$ do $\beta[b',e'] \leftarrow 0;$ $\begin{aligned} \mathbf{for} \ e^{\prime\prime} &\in [e^{\prime}+1,\ldots,n] \ \mathbf{do} \\ &\mid \beta[b^{\prime},e^{\prime}] \leftarrow \beta[b^{\prime},e^{\prime}] + \beta[e^{\prime}+1,e^{\prime\prime}] \cdot \exp\left(\vec{\theta} \cdot \vec{\phi_{c}}(C_{b:n},b^{\prime},e^{\prime},e^{\prime\prime})\right); \end{aligned}$ **Output**: β ;

• Starting from boundary values

 $\beta(b',n) = 1$

• After obtaining $\alpha(b', e')$ and $\beta(b', e')$ values, $P(WRD(C_{b:e}|C_{1:n}))$ can be calculated as:

$$\frac{1}{Z}\alpha(b,e)\beta(b,e)$$

Partition function for semi-CRF

VestlakeNLP

• Partition Function

$$Z = \sum_{w} \exp(\hat{\theta} \cdot \hat{\phi}(w))$$

• Can use a dynamic program, similar to the decoding algorithm, but with *max* being replaced by *sum*.

Partition function for semi-CRF

WestlakeNLP

```
Inputs: s = C_{1:n}, semi-CRF model model and feature weight vector \vec{\theta};
Initialisation:
for e \in [1, \ldots, n] do
   table[1, e] \leftarrow \vec{\theta} \cdot \vec{\phi}_c(C_{1:n}, 0, 0, e);
Algorithm:
for e \in [2, ..., n] do
   for b \in [2, \ldots, e] do
Z \leftarrow \sum_{b \in [1,...,n]} \exp(table[b,n]);
Output: Z;
```

• Log sum exp trick can be used to avoid numeric overflow.

Contents

VestlakeNLP

- 9.1 Sequence Segmentation
 - 9.1.1 Evaluating Sequence Segmentation outputs
 - 9.1.2 Sequence Labelling method for Sequence Segmentation
- 9.2 Discriminative Models for Sequence Segmentation
 - 9.2.1 Word-Level Features for Word Segmentation
 - 9.2.2 Exact Search Decoding Using Dynamic Program
 - 9.2.3 Semi-Markov Conditional Random Fields
 - 9.2.4 Large Margin Models
- 9.3 Perceptron and Beam Search
- 9.4 Summary

Training semi-CRF

VestlakeNLP

Given a set of training data $D = \{(C_i, W_i)\}|_{i=1}^n$, where C_i is a sentence and

 W_i is its corresponding gold-standard segmentation, the semi-CRF training objective is to maximize the log-likelihood of *D*:

$$\vec{\hat{\theta}} = argmax_{\vec{\theta}} \log P(D)$$

$$= \operatorname{argmax}_{\vec{\theta}} \sum_{i} \log P\left(W_i | C_i\right)$$

$$= \operatorname{argmax}_{\overrightarrow{\theta}} \sum_{i} \log \frac{\exp\left(\overrightarrow{\theta} \cdot \overrightarrow{\phi}(W_{i}, C_{i})\right)}{\sum_{W' \in GEN(W)} \exp\left(\overrightarrow{\theta} \cdot \overrightarrow{\phi}(W', C_{i})\right)}$$
$$= \operatorname{argmax}_{\overrightarrow{\theta}} \sum_{i} \left(\overrightarrow{\theta} \cdot \overrightarrow{\phi}(W_{i}, C_{i}) - \log\left(\sum_{W' \in GEN(W_{i})} \exp\left(\overrightarrow{\theta} \cdot \overrightarrow{\phi}(W', C_{i})\right)\right)\right)$$

Local gradient

Local gradient

WestlakeNLP

• For each training example, the local gradient with respect to $\vec{\theta}$ is:

$$\vec{\phi}(W_i, C_i) - \frac{\sum_{W'} \exp(\vec{\theta} \cdot \vec{\phi}(W', C_i)) \cdot \vec{\phi}(W', C_i)}{\sum_{W''} \exp(\vec{\theta} \cdot \vec{\phi}(W'', C_i))}$$

$$= \vec{\phi}(W_i, C_i) - \sum_{W'} P(W'|C_i) \vec{\phi}(W', C_i), (\text{definition of } P(W'|C_i))$$

• The major challenge is the summation of exponential possible outputs.

Local gradient

• Similar to CRF, rely on feature locality.

Taking word segmentation for example:

$$\sum_{W'} P(W'|C_i) \overrightarrow{\phi}(W', C_i) = \sum_{W' \in GEN(C_i)} P(W'|C_i) \left(\sum_{j=1}^{|W'|} \overrightarrow{\phi}(w_{j-1}, w_j) \right)$$

$$= E_{W' \sim P(W'|C_i)} \left(\sum_{j=1}^{|W'|} \overrightarrow{\phi}(w_{j-1}, w_j) \right)$$

- We can rewrite $\sum_{W'} P(W'|C_i)$ as:
- $E_{W' \sim P(W'|C_i)}\left(\sum_{j=1}^{|W'|} \overrightarrow{\phi}(w_{j-1}, w_j)\right)$

$$= E_{W' \sim P(W'|C_i)} \left(\sum_{C_{b':b-1} \in W', C_{b:e} \in W'} \overrightarrow{\phi_c}(C_i, b', b-1, e) \right)$$

$$= \sum_{b',b,e} E_{C_{b':b-1}C_{b:e} \sim P(\text{IsBigram}(b',b-1,e)|C_i)} \overrightarrow{\phi_c}(C_i,b',b-1,e)$$

• GENBIGRAM represents the set of all bigrams in all possible

segmentations of C_i

• Equal to the sum of the feature vectors weighed by the marginal

probability of the bigram: $P(\text{IsBigram}(b', b - 1, e)|C_i)\overrightarrow{\phi_c}(C_i, b', b - 1, e)$

• Thus, the task boils down to the calculation of the marginal probabilities

 $P(BIGRAM(b', b - 1, e)|C_i)$ efficiently for all valid values of b', b and e

VestlakeNLP

$$P(\text{IsBIGRAM}(b', b - 1, e) | C_i) = \sum_{W \in \text{GEN}(C_i), \text{ such that } C_{b':b-1} \in W, C_{b:e} \in W} \frac{1}{Z} \prod_{j=1}^{|W|} \exp\left(\vec{\theta} \cdot \vec{\phi}(w_{j-1}, w_{j})\right)$$
$$= \frac{1}{Z} \left(\sum_{W' \in \text{GEN}(C_{1:b-1}), \text{ such that } C_{b':b-1} \in W'} \prod_{j=1}^{|W'|} \exp\left(\vec{\theta} \cdot \vec{\phi}(w_{j-1}^{l}, w_{j}^{l})\right)\right)$$
$$\left(\sum_{W' \in \text{GEN}(C_{b:n}), \text{ such that } C_{b:e} \in W'} \prod_{j=1}^{|W'|-1} \exp\left(\vec{\theta} \cdot \vec{\phi}(w_{j}^{r}, w_{j+1}^{r})\right)\right),$$

• For W^l , we have $W^l_{|W^l-1|} = C_{b':b-1}$, and for W^r , we have $w^r_1 = C_{b:e}$

 $P(BIGRAM(b', b - 1, e)|C_i)$ can be computed efficiently using

Forward-Backward technique

 $P(BIGRAM(b', b - 1, e)|C_i)$ = $\frac{\alpha(b', b - 1)\beta(b, e) \exp\left(\vec{\theta} \cdot \vec{\phi_c}(C_i, b', b - 1, e)\right)}{Z}$

Forward Backward Algorithm for training **VestlakeNLP** semi-CRF

Inputs: $s = C_{1:n}$, semi-CRF model with feature weight vector θ ; Variables: table, α, β ; $\alpha \leftarrow \text{FORWARD}(C_{1:n}, \vec{\phi}, \vec{\theta})$ u $\beta \leftarrow \text{BACKWARD}(C_{1:n}, \vec{\phi}, \vec{\theta})$ u $Z \leftarrow \text{PARTITION}(C_{1:n}, \vec{\phi}, \vec{\theta})$ u for $b \in [1, \ldots, n]$ do for $e \in [b, \ldots, n]$ do $\begin{vmatrix} \mathbf{for} \ b' \in [1, \dots, b-1] \ \mathbf{do} \\ table[b'][b-1][e] \leftarrow \\ \alpha[b'][b-1] \cdot \beta[b][e] \cdot \exp\left(\vec{\theta} \cdot \vec{\phi}_c(C_{1:n}, b', b-1, e)\right)/Z; \end{aligned}$ **Output:** *table*;

Forward Backward Algorithm for training **VestlakeNLP** semi-CRF

• Partition Function

$$Z = \sum_{w} \exp(\hat{\theta} \cdot \hat{\phi}(w))$$

• Can use a dynamic program, similar to the decoding algorithm, but with *max* being replaced by *sum*.

Partition function for semi-CRF

WestlakeNLP

```
Inputs: s = C_{1:n}, semi-CRF model model and feature weight vector \vec{\theta};
Initialisation:
for e \in [1, \ldots, n] do
   table[1, e] \leftarrow \vec{\theta} \cdot \vec{\phi}_c(C_{1:n}, 0, 0, e);
Algorithm:
for e \in [2, ..., n] do
   for b \in [2, \ldots, e] do
Z \leftarrow \sum_{b \in [1,...,n]} \exp(table[b,n]);
Output: Z;
```

• Log sum exp trick can be used to avoid numeric overflow.

Contents

VestlakeNLP

- 9.1 Sequence Segmentation
 - 9.1.1 Evaluating Sequence Segmentation outputs
 - 9.1.2 Sequence Labelling method for Sequence Segmentation
- 9.2 Discriminative Models for Sequence Segmentation
 - 9.2.1 Word-Level Features for Word Segmentation
 - 9.2.2 Exact Search Decoding Using Dynamic Program
 - 9.2.3 Semi-Markov Conditional Random Fields
 - 9.2.4 Large Margin Models
- 9.3 Perceptron and Beam Search
- 9.4 Summary

Large Margin Models

- Scoring
 - $score(S) = \vec{\theta} \cdot \vec{\phi}(S)$
- Decoding: same as semi-CRF

Large Margin Models

WestlakeNLP

- Scoring
 - $score(S) = \vec{\theta} \cdot \vec{\phi}(S)$
- Decoding: same as semi-CRF
- Training
 - largely the same as those for sequence labelling

• structure perceptron
$$\sum_{i=1}^{N} \max\left(0, \max_{S'}\left(\vec{\theta} \cdot \vec{\phi}(S')\right) - \vec{\theta} \cdot \vec{\phi}(S_i)\right)$$

• structured SVM

$$\frac{1}{2} \left| \left| \vec{\theta} \right| \right|^2 + C \left(\sum_{i=1}^N \max \left(0, 1 - \vec{\theta} \cdot \vec{\phi}(S_i) + \max_{S' \neq S_i} \left(\vec{\theta} \cdot \vec{\phi}(S') \right) \right) \right)$$

Large Margin Models

WestlakeNLP

Contents

VestlakeNLP

- 9.1 Sequence Segmentation
 - 9.1.1 Evaluating Sequence Segmentation outputs
 - 9.1.2 Sequence Labelling method for Sequence Segmentation
- 9.2 Discriminative Models for Sequence Segmentation
 - 9.2.1 Word-Level Features for Word Segmentation
 - 9.2.2 Exact Search Decoding Using Dynamic Program
 - 9.2.3 Semi-Markov Conditional Random Fields
 - 9.2.4 Large Margin Models
- 9.3 Perceptron and Beam Search
- 9.4 Summary

Segment-level features

- Pros
 - offer a wider context range
 - a direct source of information about the output structures
- Cons
 - feature sparsity
 - For syntactic chunking, a possible noun phrase can span over tens of words.
 - decoding inefficiency
 - using segment bigram feature: $O(n^3)$
 - using segment trigram features: $O(n^4)$

Segment-level features

- Pros
 - offer a wider context range
 - a direct source of information about the output structures
- Cons
 - feature sparsity
 - For syntactic chunking, a possible noun phrase can span over tens of words.
 - decoding inefficiency
 - using segment bigram feature: $O(n^3)$
 - using segment trigram features: $O(n^4)$

Solution: beam search

- Model can use arbitrary features without Markov assumptions
- Inexact search to accommodate feature context
- Incrementally processes the input sequence from left to right,

building the output structure in linear time.

• Tradeoff between optimality and efficiency.

Beam Search Decoding

Given an input sentence $W_{1:n}$, the algorithm incrementally builds partial output candidates $T_{1:i}$ from left to right, using an agenda to maintain the khighest scored partial output at each step.

- Each candidate is a partial output $T_{1:i}$.
- Starting from an initial agenda with an empty sequence
- At each step, enumerate all possible local structures concerning the current word to generate new partial output candidates
- Score each candidate and leave top-k candidates for next step
- Repeats until the end of the sentence, the top-1 left is taken for output
An Example of Beam Search

*C*_{1:5} = 西 班 牙 足 球

Beam Search Decoding Algorithm

VestlakeNLP

```
Inputs: \theta — discriminative linear model parameters;
W_{1:n} — input sequence;
k — beam size;
Initialisation: agenda \leftarrow [([], 0)];
Algorithm:
for i \in [1, ..., n] do
    candidates \leftarrow agenda;
    agenda \leftarrow [];
    for candidate \in candidates do
        T_{1:i-1} \leftarrow candidate[0];
        score \leftarrow candidate[1];
        for t \in L do
             T_1^i \leftarrow \operatorname{Expand}(T_{1:i-1}, t);
            new\_score \leftarrow score + \vec{\theta} \cdot \vec{\phi}_{\Delta}(W_{1:n}, T_{1:i-1}, t);
             APPEND(agenda, (T_{1:i}, new\_score));
    agenda \leftarrow \text{TOP-K}(agenda, k);
Output: TOP-K(agenda, 1)[0];
```

Relaxing feature locality constraints

At each step, we should score partial outputs from the beginning of the sentence until the current word being processed

• At the *i*-th incremental step, the feature vector for the partial output $T_{1:i}$ is built incrementally from the previous step:

$$\overrightarrow{\phi}(W_{1:n}, T_{1:i}) = \overrightarrow{\phi}(W_{1:n}, T_{1:i-1}) + \overrightarrow{\phi_{\Delta}}(W_{1:n}, T_{1:i-1}, t_i)$$

- $\overrightarrow{\phi_{\Delta}}(W_{1:n}, T_{1:i-1}, t_i)$ indicates the incremental feature vector that consists of the partial structures concerning t_i
- Differences from the incremental feature for sequence labeling

 $\vec{\phi}(W_{1:n}, T_{I-k:i-1}, t_i)$

• no Markov restriction on the label context

WestlakeNLP

Contents

VestlakeNLP

- 9.1 Sequence Segmentation
 - 9.1.1 Evaluating Sequence Segmentation outputs
 - 9.1.2 Sequence Labelling method for Sequence Segmentation
- 9.2 Discriminative Models for Sequence Segmentation
 - 9.2.1 Word-Level Features for Word Segmentation
 - 9.2.2 Exact Search Decoding Using Dynamic Program
 - 9.2.3 Semi-Markov Conditional Random Fields
 - 9.2.4 Large Margin Models
- 9.3 Perceptron and Beam Search
- 9.4 Summary

Beam Search

- Problems
 - highest model score is not guaranteed to be found by the decoder.
- Solution
 - adjust the training objective into the minimization of search errors.
 - Merge model error and search error into one single objective.

Perceptron Training for Guiding Beamsearch Decoding

- Basic idea
 - Use the current model parameter $\vec{\theta}$ to decode training instances by beam search
 - If the model makes a mistake, update $\vec{\theta}$
- Two types of updates
 - At the *i*-th step, the gold local structure sequence $G_{1:i}$ falls out of agenda/beam
 - The highest-scored output $\widehat{T_{1:n}}$ has a higher score compared with $G_{1:n}$
- Update method
 - Standard perceptron algorithm
 - Mistake 1: $G_{1:i}$ (positive example), $\widehat{T_{1:i}}$ (negative example)
 - Mistake 2: $G_{1:n}$ (positive example), $\widehat{T_{1:n}}$ (negative example)

WestlakeNLP

Beam Search Training Algorithm

VestlakeNLP

Gold Sequence of Action: $start \rightarrow S_{11} \rightarrow S_{2k} \rightarrow \cdots \rightarrow S_{i(k+1)}$

Beam Search Training Algorithm

WestlakeNLP

```
Inputs: D — gold standard training set; M — total number of
training instances;
k — beam size;
Initialisation: \vec{\theta} \leftarrow 0;
Algorithm:
for t \in [1, ..., M] do
    for (W_{1:n}, G_{1:n}) \in D do
          agenda \leftarrow [([], 0)]
         for i \in [1, ..., n] do
              candidates \leftarrow agenda;
              agenda \leftarrow [];
              for candidate \in candidates do
                    T_{1:i-1} \leftarrow candidate[0];
                   score \leftarrow candidate[1];
                   for t \in L do
                        T_{1:i} \leftarrow \text{EXPAND}(T_{1:i-1}, t);
                        new\_score \leftarrow score + \vec{\theta} \cdot \vec{\phi}_{\Delta}(W_{1:n}, T_{1:i-1}, t);
                        APPEND(agenda, (T_{1:i}, new\_score));
              agenda \leftarrow \text{TOP-K}(agenda, k);
              if not CONTAIN(G_{1:i}, agenda) then
                   pos \leftarrow G_{1:i};
                   neg \leftarrow \text{TOP-K}(agenda, 1)[0];
                   \vec{\theta} \leftarrow \vec{\theta} + \vec{\phi}(pos) - \vec{\phi}(neg);
                   return:
         if G_{1:n} \neq \text{TOP-K}(agenda, 1)[0] then
              \vec{\theta} \leftarrow \vec{\theta} + \vec{\phi}(G_{1:n}) - \vec{\phi}(\text{TOP-K}(agenda, 1)[0]);
Output: \theta;
```

Contents

VestlakeNLP

- 9.1 Sequence Segmentation
 - 9.1.1 Evaluating Sequence Segmentation outputs
 - 9.1.2 Sequence Labelling method for Sequence Segmentation
- 9.2 Discriminative Models for Sequence Segmentation
 - 9.2.1 Word-Level Features for Word Segmentation
 - 9.2.2 Exact Search Decoding Using Dynamic Program
 - 9.2.3 Semi-Markov Conditional Random Fields
 - 9.2.4 Large Margin Models
- 9.3 Perceptron and Beam Search
- 9.4 Summary

- Sequence segmentation using Sequence Labeling
- Discriminative models for directly solving sequence segmentation tasks
- Semi-Markov Conditional Random Fields
- A learning guided beam search framework using perceptron training