
Natural
Language
Processing
Yue Zhang
Westlake University

Chapter 9

Sequence Segmentation

2

3

Contents
• 9.1 Sequence Segmentation

• 9.1.1 Evaluating Sequence Segmentation Outputs

• 9.1.2 Sequence Labelling Method for Sequence Segmentation

• 9.2 Discriminative Models for Sequence Segmentation

• 9.2.1 Word-Level Features for Word Segmentation

• 9.2.2 Exact Search Decoding Using Dynamic Program

• 9.2.3 Semi-Markov Conditional Random Fields

• 9.2.4 Large Margin Models

• 9.3 Perceptron and Beam Search

• 9.4 Summary

4

Contents
• 9.1 Sequence Segmentation

• 9.1.1 Evaluating Sequence Segmentation Outputs

• 9.1.2 Sequence Labelling Method for Sequence Segmentation

• 9.2 Discriminative Models for Sequence Segmentation

• 9.2.1 Word-Level Features for Word Segmentation

• 9.2.2 Exact Search Decoding Using Dynamic Program

• 9.2.3 Semi-Markov Conditional Random Fields

• 9.2.4 Large Margin Models

• 9.3 Perceptron and Beam Search

• 9.4 Summary

5

Sequence Segmentation Task
• Input: a character/word sequence 𝑋!:#

• Output: the most probable segment sequence "𝑆!: $

6

Contents
• 9.1 Sequence Segmentation

• 9.1.1 Evaluating Sequence Segmentation Outputs

• 9.1.2 Sequence Labelling Method for Sequence Segmentation

• 9.2 Discriminative Models for Sequence Segmentation

• 9.2.1 Word-Level Features for Word Segmentation

• 9.2.2 Exact Search Decoding Using Dynamic Program

• 9.2.3 Semi-Markov Conditional Random Fields

• 9.2.4 Large Margin Models

• 9.3 Perceptron and Beam Search

• 9.4 Summary

7

Evaluating sequence segmentation

• Represent the output of sequence segmentation
• a set of tuples {(𝑏%, 𝑒%, 𝑙%)}
• 𝑏%, 𝑒% and 𝑙% represent the beginning index, end index and label

(if applicable) of a segment
• Metrics

Given a gold output 𝑆& and a system output 𝑆, we can find a
common subset of segments 𝑆' = 𝑆& ∩ 𝑆.
• precision: 𝑃 = $!

$: percentage of segments in 𝑆 that are correct
• recall: 𝑅 = $!

$"
: percentage of gold segments that are predicted

• F-score: 𝐹 = ()*
)+*

: combines information on precision and recall

8

• Example:

Input: 南京市里面和米很贵
Gold output 𝑆! : '南京市' , '里' , '面' , '和' , '米' , '很' , '贵' (Length: 7)

System output S: '南京市' , '里面' , '和' , '米' , '很' , '贵' (Length: 6)

Common subset of segments S : '南京市' , '和' , '米' , '很' , '贵' (Length: 5)

Precision: 𝑃 = $!
$
= ,

-
= 0.83

Recall: 𝑅 = $!
$"
== ,

. = 0.71

F-score: 𝐹 = ()*
)+* = 0.77

Evaluating sequence segmentation

9

Contents
• 9.1 Sequence Segmentation

• 9.1.1 Evaluating Sequence Segmentation Outputs

• 9.1.2 Sequence Labelling Method for Sequence Segmentation

• 9.2 Discriminative Models for Sequence Segmentation

• 9.2.1 Word-Level Features for Word Segmentation

• 9.2.2 Exact Search Decoding Using Dynamic Program

• 9.2.3 Semi-Markov Conditional Random Fields

• 9.2.4 Large Margin Models

• 9.3 Perceptron and Beam Search

• 9.4 Summary

10

Segmentation vs Sequence Labelling

• Connections

• Sequence Labelling can be applied to solve sequence segmentation task

• Output form

• segment sequence vs. label sequence

• Transform segmentation into labels.

• e.g., Segment(S) / attach(A)

#

SAA SA S

11

• Input: [我] [吃] [了] [苹果]
• Output: 我(P) 吃(V) 了(U) 苹果(NN)
• Labels: P V U NN

Sequence
Labeling

• Input: [我] [吃] [了] [苹果]
• Output: [我] [吃 了 苹果]
• Labels: S B-VP I-VP I-VP

Sequence
Segmentation

Segmentation vs Sequence Labelling

• More fine grained tags.

• Combine segmentation label with chunk type.

12

Typical label sets

• Word segmentation

• label: B (Beginning), I (Internal), E (Ending) and S (Single-character word)

• Syntactic chunking

• label: {B, I}

• combine syntactic categories: such as B-VP or I-NP

• Named entity recognition

• label: {B-X, I,E, S-X,O}

• X indicates the type of entity: PER (person), LOC (location), ORG

(organization)

• O: a non-named entity word

13

Features templates

• For discriminative models

• 𝑠𝑐𝑜𝑟𝑒 𝑇!:#, 𝑋!:# = �⃗� ; 𝜙 𝑇!:#, 𝑋!:#

• 𝜙 𝑇!:#, 𝑋!:# = ∑%/!𝜙(𝑡%, 𝑇%01:%0!, 𝑋!:#)

• Feature templates --- patterns. (e.g., 𝑤%𝑡%)

• Feature instances

• matching templates to data.

• Feature vector. “He visited New Zealand.”

B-LOC E-LOC

< 0, 0,…, 0, 1, 0,…,0, 1, 0,…,0, …,0, I, 0,…,0 >

𝑤 = New
𝑡 = E-LOC

𝑤 = old
𝑡 = B-PER

𝑤 = New
𝑡 = B-LOC

𝑤 = Zealand
𝑡 = E-LOC

14

Features for word segmentation

• 𝑐% represents the 𝑖-th character in the input sequence

• PUNC indicates whether a character is a punctuation or not

• TYPE indicates the category of a character among four predefined

character classes

• numbers, date time indicators (“年” (year), “月” (month), “日” (day)

“时” (hour) “分” (minute) and “秒” (second)), English letters and other

characters.

All combine with 𝑡"

15

Example

Input: 其中外企6个

𝑐% =	𝑐> =‘企’,	𝑡> =‘B'

All combine
with “B”

16

Features for syntactic chunking

• Template	1-5	all	combine	with	𝑡%
• 𝑤% indicates the 𝑖-th input word

• 𝑝% indicates the POS tag of the 𝑖-th word

• 𝑡%indicates the 𝑖-th output segmentation label

• Output tag-tag transition features 𝑡%0! 𝑡% are useful for syntactic chunking

e.g. previous chunking label is I-VP, the probability of the next label being

I-VP or B-NP can be relatively higher.

17

Input: Mary went to Chicago to meet her boyfriend John Smith.

𝑤% = 𝑤- =‘meet’.	𝑡- =‘B-VP’

Features for syntactic chunking

All combine
with “B-VP”

18

Features for NER

• Word shape

• Simplify the word form to reduce sparsity

• X/x: upper/lower case letters, d: numerical digits

• Shape(𝑤! = “ELMo”) = “XXXx”, shortshape(𝑤! =“ELMo”)=Xx.

• Gazetteer features

• whether the current word exists in a list of known person names, geolocation names,

organization names etc.

• useful for restricted domains

All combine
with “𝑡"”

19

Input: Mary went to Chicago to meet her boyfriend John Smith.

𝑤" = 𝑤# =‘Chicago’,	𝑡# =‘B-LOC’

Features for NER

All combine
with “B-LOC”

20

Contents
• 9.1 Sequence Segmentation

• 9.1.1 Evaluating Sequence Segmentation outputs

• 9.1.2 Sequence Labelling method for Sequence Segmentation

• 9.2 Discriminative Models for Sequence Segmentation

• 9.2.1 Word-Level Features for Word Segmentation

• 9.2.2 Exact Search Decoding Using Dynamic Program

• 9.2.3 Semi-Markov Conditional Random Fields

• 9.2.4 Large Margin Models

• 9.3 Perceptron and Beam Search

• 9.4 Summary

21

Problem of Segmentation by Sequence
Labelling

Feature vector is the key to discriminative models.

For efficient decoding and training, sequence labelling models assume

Markov properties over output label sequences

• A second-order Markov model allows features to be defined over three

consecutive segmentation labels

• But segment level features can be beyond label n-grams. There can be

words with than three characters. For example, “the previous word = 萧

规曹随(to follow convention)” cannot be directly modeled.

22

Directly Modeling for Segmentation

Model sequence segmentation directly using discriminative structured

predictors, which score output sequences with segment-level features

• As extensions to discriminative sequence labelers for a different output

structure – sequence segmentation

• We consider discriminative models in this chapter.

• Three aspects to discuss in detail

• segment-level feature definitions

• decoding

• training

23

Contents
• 9.1 Sequence Segmentation

• 9.1.1 Evaluating Sequence Segmentation outputs

• 9.1.2 Sequence Labelling method for Sequence Segmentation

• 9.2 Discriminative Models for Sequence Segmentation

• 9.2.1 Word-Level Features for Word Segmentation

• 9.2.2 Exact Search Decoding Using Dynamic Program

• 9.2.3 Semi-Markov Conditional Random Fields

• 9.2.4 Large Margin Models

• 9.3 Perceptron and Beam Search

• 9.4 Summary

24

Word-Level Features for Word Segmentation

• Take Chinese word segmentation as an example task

• Suppose that features are defined within two consecutive words,

or a word bigram

• For an input sentence 𝐶!:# = 𝑐!𝑐(…𝑐#, a segmented output can be

denoted as 𝑊!: ? = 𝑤!𝑤(…𝑤?

• 𝑤@ = 𝑐A @ 𝑐A @ +!…𝑐B @

• 𝑏(𝑗) and 𝑒(𝑗) denote the character indices for the first and last

characters in the word 𝑤@

25

Word-Level Features for Word Segmentation

• E.g., 我昨天打球了 𝑤(=昨天, 𝑏 2 = 2, 𝑒 2 = 3

• Global feature vector ϕ 𝑊!: ? can be extracted by accumulating local

features ϕ 𝑤@0!, 𝑤@ over all word bigrams 𝑤@0!𝑤@ in the output sequence:

ϕ 𝑊!: ? =a
@/(

?

ϕ 𝑤@0!, 𝑤@

• ϕ 𝑤@0!, 𝑤@ ≡ ϕC 𝐶!:#, 𝑏 𝑗 − 1 , 𝑒 𝑗 − 1 , 𝑒 𝑗

26

Word-Level Features for Word Segmentation

27

Example

• Input: <s> 我吃了苹果 </s>

Feature Entry
𝜙 (𝑤!"#, 𝑤!)

Feature Vector

𝜙 (𝑤$, 𝑤#) 0, 0, …, 𝑓%$ 𝑤!"#𝑤! = “ < 𝑠 >我” = 1,
𝑓&$# 𝑤! 𝑖𝑠 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 = 1, …

𝜙 (𝑤#, 𝑤&) 0, 0, …, 𝑓'(𝑤!"#𝑤! = “我吃” = 1, …, 𝑓&$# 𝑤! 𝑖𝑠 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 =
1, …

𝜙 (𝑤&, 𝑤%) 0, 0, …, 𝑓)# 𝑤!"#𝑤! = “吃了” = 1, …, 𝑓&$# 𝑤! 𝑖𝑠 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 =
1, …

𝜙 (𝑤%, 𝑤') 0, 0, …, 𝑓'(& 𝑤!"#𝑤! = “了苹果” = 1, …

𝜙 (𝑤', 𝑤)) 0, 0, …, 𝑓)$# 𝑤!"#𝑤! = “苹果 </𝑠 > ” = 1, …

𝜙 (𝑊#:') 0, 0, …, 𝑓%$ 𝑤!"#𝑤! = “ < 𝑠 >我” = 1, …, 𝑓'(𝑤!"#𝑤! = “我吃” = 1, …,
𝑓)# 𝑤!"#𝑤! = “吃了” = 1, …, 𝑓&$# 𝑤! 𝑖𝑠 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 = 3, …,
𝑓'(& 𝑤!"#𝑤! = “了 苹果” = 1, …, 𝑓)$# 𝑤!"#𝑤! 𝑖𝑠 “苹果 </𝑠 > ” = 1, …

28

Contents
• 9.1 Sequence Segmentation

• 9.1.1 Evaluating Sequence Segmentation outputs

• 9.1.2 Sequence Labelling method for Sequence Segmentation

• 9.2 Discriminative Models for Sequence Segmentation

• 9.2.1 Word-Level Features for Word Segmentation

• 9.2.2 Exact Search Decoding Using Dynamic Program

• 9.2.3 Semi-Markov Conditional Random Fields

• 9.2.4 Large Margin Models

• 9.3 Perceptron and Beam Search

• 9.4 Summary

29

Discriminative linear models for
sequence segmentation

• Use word segmentation for example

• A discriminative linear model to score different segmentation outputs

𝐶!:# given an input 𝑊!: D , according to the feature representation ϕ 𝑊!: D

• 𝑆𝑐𝑜𝑟𝑒 𝑊!: D = θ ⋅ ϕ 𝑊!: D

• Two discriminative linear model instances

• log-linear models (semi-CRF)

• large margin models (SVM, perceptron)

• Decoding uses the same algorithms

30

Decoding
• 𝐶!:#: an input sentence

• 𝑊!: D : an output segmentation

• The goal of decoding is to find the highest-scored output f𝑊 according to a given

model θ:

f𝑊 = 𝑎𝑟𝑔𝑚𝑎𝑥Dθ ⋅ ϕ 𝑊

• Assume that features are extracted from word bigrams

θ ⋅ ϕ 𝑊": $ = θ ⋅ I
%&'

(

ϕ 𝑤%)", 𝑤% =I
%&'

(

θ ⋅ ϕ 𝑤%)", 𝑤% =I
%&'

(

θ ⋅ ϕ* 𝐶":+, 𝑏 𝑗 − 1 , 𝑒 𝑗 − 1 , 𝑒 𝑗

• Score can be computed incrementally adding word by word

• Denote a word sequence with the last word being 𝐶A:B as W(b, e).

• the highest scored output sequence with the last word being 𝐶A:B as f𝑊 𝑏, 𝑒 .

• Suppose that the second last word in f𝑊(𝑏, 𝑒) is 𝐶A#:A0!
• Then the subsequence in f𝑊(𝑏, 𝑒) that ends with 𝑐A0! must be the highest-

scored among all segmentation sequences that end with 𝐶A#:A0!, namely
f𝑊 𝑏Q, 𝑏 − 1 .

• Therefore a table can be built for f𝑊(𝑏, 𝑒) incrementally.
31

Decoding

R𝑊 𝑏,, 𝑏 − 1

R𝑊(𝑏, 𝑒)

𝐶" 𝐶-, 𝐶-)" 𝐶- 𝐶.

32

Decoding

The incremental nature of the score calculation results in the availability of

optimal sub problems (DP):

𝑠𝑐𝑜𝑟𝑒 f𝑊 𝑏, 𝑒

= 𝑎𝑟𝑔𝑚𝑎𝑥!UA#UA0! 𝑠𝑐𝑜𝑟𝑒(f𝑊 𝑏Q, 𝑏 − 1) + θ ⋅ ϕC 𝐶!:#, 𝑏Q, 𝑏 − 1, 𝑒

• f𝑊 𝑏, 𝑒 denotes the highest-scored partial output with the last word being

CA:B = 𝑐A, 𝑐A+!…𝑐B
• the beginning character index 𝑏 ∈ 1…𝑛

• the ending character index 𝑒 ∈ 𝑏…𝑛 .

33

Decoding

𝑠𝑐𝑜𝑟𝑒 f𝑊 𝑏, 𝑒 = 𝑎𝑟𝑔𝑚𝑎𝑥!UA#UA0! 𝑠𝑐𝑜𝑟𝑒(f𝑊 𝑏Q, 𝑏 − 1) + θ ⋅ ϕC 𝐶!:#, 𝑏Q, 𝑏 − 1, 𝑒

• Use table to store 𝑠𝑐𝑜𝑟𝑒(f𝑊(𝑏, 𝑒)) for all 𝑏 ∈ 1,… , 𝑛 , 𝑒 ∈ [𝑏, … , 𝑛]

• Use bp to store 𝑎𝑟𝑔𝑚𝑎𝑥A# .

• Both 𝑛×𝑛 in size.

• The final highest-scored output:

f𝑊 = 𝑎𝑟𝑔𝑚𝑎𝑥A∈ !…# 𝑠𝑐𝑜𝑟𝑒 f𝑊 𝑏, 𝑛

34

Decoding

下

天

前 前天

以 以前 以前天

1 2 3 4 ……

1

2

3

4

…
…

以_前

35

Decoding

• The complexity is O(𝑛$), due to the enumeration of e, b and b'

• Force a maximum word size M: linear time complexity

36

Contents
• 9.1 Sequence Segmentation

• 9.1.1 Evaluating Sequence Segmentation outputs

• 9.1.2 Sequence Labelling method for Sequence Segmentation

• 9.2 Discriminative Models for Sequence Segmentation

• 9.2.1 Word-Level Features for Word Segmentation

• 9.2.2 Exact Search Decoding Using Dynamic Program

• 9.2.3 Semi-Markov Conditional Random Fields

• 9.2.4 Large Margin Models

• 9.3 Perceptron and Beam Search

• 9.4 Summary

37

Semi-Markov Conditional Random Fields

• Semi-CRF is a log-linear model for sequence segmentation, which gives a

probability interpretation to the scores assigned to segmented output

structures.

𝑃 𝑊 𝐶 =
exp θ ⋅ ϕ 𝑊

∑(!∈012 3 exp θ ⋅ ϕ 𝑊,

GEN(𝐶) denotes all possible segmented outputs of 𝐶

• We discuss below:

• Calculating marginal probabilities

• Training a CRF model

38

Calculating Marginal Probabilities

• Given an input 𝐶!:#, denote the probability of 𝐶A:B = 𝑐A𝑐A+!…𝑐B
being a word as 𝑃 𝑊𝑅𝐷 𝐶A:B 𝐶!:# , where 𝑊𝑅𝐷 𝐶A:B indicates that

𝐶A:B is a word in the sentence.

• We want to estimate 𝑃 𝑊𝑅𝐷 𝐶A:B 𝐶!:#

𝑃 𝑊𝑅𝐷 𝐶%:' 𝐶(:) = :
∈,-. /+:, ,/-:.∈

𝑃 𝑊 𝐶(:)

• 𝑊 ∈ 𝐺𝐸𝑁 𝐶!:# , 𝐶A:B ∈ 𝑊denotes all possible segmentations of 𝐶!:#
that contain the word 𝐶A:B

• An exponential number of summations

39

Calculating Marginal Probabilities

Since features are local to word bigrams, we have

𝑃 𝑊 𝐶(:) =
exp θ ⋅ ϕ 𝑊

𝑍

=
exp θ ⋅ ∑1ϕ 𝑤12(, 𝑤1

𝑍

=
∏1 exp θ ⋅ ϕ 𝑤12(, 𝑤1

𝑍

where 𝑍 is the partition function ∑? exp θ ⋅ ϕ 𝑊 .

40

Calculating Marginal Probabilities

𝑃 𝑊𝑅𝐷 𝐶-:. 𝐶":+ = I
(∈456 3":$,*%:&∈(

1
𝑍

_
%&": (

exp θ ⋅ ϕ 𝑤%)", 𝑤%

𝐶8 𝐶.𝐶" 𝐶+

α

β

41

Calculating Marginal Probabilities

• For 𝑊b = 𝑤!b , 𝑤(b , … , 𝑤?$
b , 𝑤|?$|

b = 𝐶A:B

• For 𝑊d = 𝑤!d, 𝑤(d, … , 𝑤?%
d , 𝑤!d = 𝐶A:B

• cuts the full summation into the product of two components, with

the splitting point at (𝑏, 𝑒).

⟹ 𝛼(𝑏, 𝑒)

⟹ 𝛽(𝑏, 𝑒)

42

Calculating Marginal Probabilities

• 𝐶A:B = 𝐶e:>
• It's similar to Forward-Backward Algorithm in CRF

𝛽

43

Forward Algorithm for semi-CRF

• For the first component

α 𝑏3, 𝑒3 = ∑*/∈,-. /+:.0 ,/-0:.0∈*/∏14(
*/

exp θ ⋅ ϕ 𝑤12(5 , 𝑤15 =

∑%00∈ (…%02(∑7.∈,-. /+:.0 ,/-00:-01+∈7.∏14(
7.

exp L𝜃 N O𝜙 𝑤12(5 , 𝑤15 = 𝐶%00,%02(N exp L𝜃 N O𝜙 𝐶%00,%02(, 𝐶%0,'

• α 𝑏Q, 𝑒Q can be calculated incrementally by summing up relevant values regarding

α 𝑏QQ, 𝑏Q − 1 for all valid 𝑏QQ :

α 𝑏3, 𝑒3 = :
%00∈ (…%02(

α 𝑏33, 𝑏3 − 1 ⋅ exp θ ⋅ ϕ8 𝐶(:', 𝑏33, 𝑏3 − 1, 𝑒3

where 𝑏Q ∈ 1,… , 𝑒 , 𝑒Q ∈ 𝑏Q, … , 𝑒

44

Forward Algorithm for semi-CRF

α 𝑏3, 𝑒3 = :
%00∈ (…%02(

α 𝑏33, 𝑏3 − 1 ⋅ exp θ ⋅ ϕ8 𝐶(:', 𝑏33, 𝑏3 − 1, 𝑒3

where 𝑏3 ∈ 1,… , 𝑒 , 𝑒3 ∈ 𝑏3, … , 𝑒

α -!,.!

α-!!,8!)"

𝑏33 ∈ [1, … , 𝑏3 − 1]

45

Forward Algorithm for semi-CRF

• Starting from boundary values

α 1, 𝑒Q = exp θ ⋅ ϕC 𝐶!:B, 0,0, 𝑒Q for 𝑒Q ∈ 1,… , 𝑒 ,

46

Backward Algorithm for semi-CRF
• For the second component

β 𝑏Q, 𝑒Q = a
?%∈fgh i&#:(,i&#:)#∈?%

y
@/!

?% 0!

exp θ ⋅ ϕ 𝑤@d, 𝑤@+!d

• β 𝑏Q, 𝑒Q can be calculated incrementally by summing up relevant values

from all β 𝑒Q + 1, 𝑒QQ , where 𝑒QQ ∈ 𝑒Q + 1,… , 𝑛

β 𝑏Q, 𝑒Q = a
B##∈ B#+!,…,#

β 𝑒Q + 1, 𝑒QQ ⋅ exp θ ⋅ ϕC 𝐶B+!:#, 𝑏Q, 𝑒Q, 𝑒QQ

where 𝑏Q ∈ 𝑒 + 1,… , 𝑛 , 𝑒Q ∈ 𝑒 + 1,… , 𝑛 .

47

Backward Algorithm for semi-CRF

• Starting from boundary values

β 𝑏Q, 𝑛 = 1

48

Calculating Marginal Probabilities

• After obtaining α 𝑏Q, 𝑒Q and β 𝑏Q, 𝑒Q values, 𝑃 𝑊𝑅𝐷 𝐶A:B 𝐶!:#
can be calculated as:

1
𝑍
α 𝑏, 𝑒 β 𝑏, 𝑒

49

• Partition	Function

𝑍 =a
D

exp(}𝜃 ; }𝜙(𝑤))

• Can use a dynamic program, similar to the decoding algorithm, but

with 𝑚𝑎𝑥 being replaced by 𝑠𝑢𝑚.

Partition function for semi-CRF

50

Partition function for semi-CRF

• Log sum exp trick can be used to avoid numeric overflow.

51

Contents
• 9.1 Sequence Segmentation

• 9.1.1 Evaluating Sequence Segmentation outputs

• 9.1.2 Sequence Labelling method for Sequence Segmentation

• 9.2 Discriminative Models for Sequence Segmentation

• 9.2.1 Word-Level Features for Word Segmentation

• 9.2.2 Exact Search Decoding Using Dynamic Program

• 9.2.3 Semi-Markov Conditional Random Fields

• 9.2.4 Large Margin Models

• 9.3 Perceptron and Beam Search

• 9.4 Summary

52

Training semi-CRF

Given a set of training data 𝐷 = { 𝐶%,𝑊% }|%/!# , where 𝐶% is a sentence and

𝑊% is its corresponding gold-standard segmentation, the semi-CRF

training objective is to maximize the log-likelihood of 𝐷:

!θ = 𝑎𝑟𝑔𝑚𝑎𝑥; log 𝑃 𝐷

= 𝑎𝑟𝑔𝑚𝑎𝑥;∑< log 𝑃 𝑊< 𝐶<

= 𝑎𝑟𝑔𝑚𝑎𝑥;∑< log
=>? ;⋅A B9,C9

∑:;∈<=> : =>? ;⋅A B;,C9

= 𝑎𝑟𝑔𝑚𝑎𝑥;∑< θ ⋅ ϕ 𝑊< , 𝐶< − log ∑B;∈FGH B9
exp θ ⋅ ϕ 𝑊I, 𝐶<

53

Local gradient

54

Local gradient

• For each training example, the local gradient with respect to θ is:

ϕ 𝑊%, 𝐶% −
∑*# jkl m⋅n ?#,i+ ⋅n ?#,i+

∑*## jkl m⋅n ?##,i+

= ϕ 𝑊%, 𝐶% − ∑?# 𝑃 𝑊Q 𝐶% ϕ 𝑊Q, 𝐶% , defini&on of 𝑃 𝑊Q 𝐶%

• The major challenge is the summation of exponential possible outputs.

55

Local gradient

• Similar to CRF, rely on feature locality.

Taking word segmentation for example:

a
?#

𝑃 𝑊Q 𝐶% ϕ 𝑊Q, 𝐶% = a
?#∈fgh i+

𝑃 𝑊Q 𝐶% a
@/!

?#

ϕ 𝑤@0!, 𝑤@

= 𝐸?#∼) 𝑊Q 𝐶% a
@/!

?#

ϕ 𝑤@0!, 𝑤@

56

Solution: feature locality

• We can rewrite ∑?# 𝑃 𝑊Q 𝐶% as:

• 𝐸?#∼) 𝑊Q 𝐶% ∑@/!
?#

ϕ 𝑤@0!, 𝑤@

= 𝐸?#∼) 𝑊Q 𝐶% ∑i&#:&,-∈?#,i&:)∈?#ϕC 𝐶%, 𝑏Q, 𝑏 − 1, 𝑒

= a
A#,A,B

𝐸i&#:&,- i&:)∼)(pqrstuvw(A#,A0!,B)|i+)ϕC 𝐶%, 𝑏
Q, 𝑏 − 1, 𝑒

• GENBIGRAM represents the set of all bigrams in all possible

segmentations of 𝐶%

57

Solution: feature locality

• Equal to the sum of the feature vectors weighed by the marginal

probability of the bigram: 𝑃(IsBigram(𝑏Q, 𝑏 − 1, 𝑒)|𝐶%)ϕC 𝐶%, 𝑏Q, 𝑏 − 1, 𝑒

• Thus, the task boils down to the calculation of the marginal probabilities

𝑃 𝐵𝐼𝐺𝑅𝐴𝑀 𝑏Q, 𝑏 − 1, 𝑒 𝐶% efficiently for all valid values of 𝑏Q, 𝑏 and 𝑒

58

Solution: feature locality

59

Solution: feature locality

• For 𝑊b, we have 𝑊?$0!
b = 𝐶A#:A0!, and for 𝑊d, we have 𝑤!d = 𝐶A:B

60

Solution: feature locality

𝑃 𝐵𝐼𝐺𝑅𝐴𝑀 𝑏Q, 𝑏 − 1, 𝑒 𝐶% can be computed efficiently using

Forward-Backward technique

𝑃 𝐵𝐼𝐺𝑅𝐴𝑀 𝑏Q, 𝑏 − 1, 𝑒 𝐶%

=
α 𝑏Q, 𝑏 − 1 β 𝑏, 𝑒 exp θ ⋅ ϕC 𝐶%, 𝑏Q, 𝑏 − 1, 𝑒

𝑍

61

Forward Backward Algorithm for training
semi-CRF

62

• Partition	Function

𝑍 =a
D

exp(}𝜃 ; }𝜙(𝑤))

• Can use a dynamic program, similar to the decoding

algorithm, but with 𝑚𝑎𝑥 being replaced by 𝑠𝑢𝑚.

Forward Backward Algorithm for training
semi-CRF

63

Partition function for semi-CRF

• Log sum exp trick can be used to avoid numeric overflow.

64

Contents
• 9.1 Sequence Segmentation

• 9.1.1 Evaluating Sequence Segmentation outputs

• 9.1.2 Sequence Labelling method for Sequence Segmentation

• 9.2 Discriminative Models for Sequence Segmentation

• 9.2.1 Word-Level Features for Word Segmentation

• 9.2.2 Exact Search Decoding Using Dynamic Program

• 9.2.3 Semi-Markov Conditional Random Fields

• 9.2.4 Large Margin Models

• 9.3 Perceptron and Beam Search

• 9.4 Summary

65

Large Margin Models

• Scoring

• 𝑠𝑐𝑜𝑟𝑒 𝑆 = θ ⋅ ϕ 𝑆

• Decoding: same as semi-CRF

66

Large Margin Models

• Scoring

• 𝑠𝑐𝑜𝑟𝑒 𝑆 = θ ⋅ ϕ 𝑆

• Decoding: same as semi-CRF

• Training

• largely the same as those for sequence labelling

• structure perceptron ∑%/!h max 0,max
$#

θ ⋅ ϕ 𝑆Q − θ ⋅ ϕ 𝑆%

• structured SVM

1
2

θ
(
+ 𝐶 a

%/!

h

max 0,1 − θ ⋅ ϕ 𝑆% + max
$#x$+

θ ⋅ ϕ 𝑆Q

67

Large Margin Models

68

Contents
• 9.1 Sequence Segmentation

• 9.1.1 Evaluating Sequence Segmentation outputs

• 9.1.2 Sequence Labelling method for Sequence Segmentation

• 9.2 Discriminative Models for Sequence Segmentation

• 9.2.1 Word-Level Features for Word Segmentation

• 9.2.2 Exact Search Decoding Using Dynamic Program

• 9.2.3 Semi-Markov Conditional Random Fields

• 9.2.4 Large Margin Models

• 9.3 Perceptron and Beam Search

• 9.4 Summary

69

Segment-level features

• Pros

• offer a wider context range

• a direct source of information about the output structures

• Cons

• feature sparsity

• For syntactic chunking, a possible noun phrase can span over tens of words.

• decoding inefficiency

• using segment bigram feature: O(𝑛e)

• using segment trigram features: O(𝑛>)

70

Segment-level features

• Pros

• offer a wider context range

• a direct source of information about the output structures

• Cons

• feature sparsity

• For syntactic chunking, a possible noun phrase can span over tens of words.

• decoding inefficiency

• using segment bigram feature: O(𝒏𝟑)

• using segment trigram features: O(𝒏𝟒)

71

Solution: beam search

• Model can use arbitrary features without Markov assumptions

• Inexact search to accommodate feature context

• Incrementally processes the input sequence from left to right,

building the output structure in linear time.

• Tradeoff between optimality and efficiency.

72

Beam Search Decoding

Given an input sentence 𝑊!:#, the algorithm incrementally builds partial

output candidates 𝑇!:% from left to right, using an agenda to maintain the 𝑘

highest scored partial output at each step.

• Each candidate is a partial output 𝑇!:%.

• Starting from an initial agenda with an empty sequence

• At each step, enumerate all possible local structures concerning the

current word to generate new partial output candidates

• Score each candidate and leave top-k candidates for next step

• Repeats until the end of the sentence, the top-1 left is taken for output

73

An Example of Beam Search

𝐶":? = 西 班 牙 足 球

74

Beam Search Decoding Algorithm

75

Relaxing feature locality constraints

At each step, we should score partial outputs from the beginning of the

sentence until the current word being processed

• At the 𝑖-th incremental step, the feature vector for the partial output 𝑇!:%
is built incrementally from the previous step:

ϕ 𝑊!:#, 𝑇!:% = ϕ 𝑊!:#, 𝑇!:%0! + ϕ{ 𝑊!:#, 𝑇!:%0!, 𝑡%

• ϕ{ 𝑊!:#, 𝑇!:%0!, 𝑡% indicates the incremental feature vector that consists

of the partial structures concerning 𝑡%
• Differences from the incremental feature for sequence labeling

ϕ 𝑊!:#, 𝑇|01:%0!, 𝑡%

• no Markov restriction on the label context

76

Contents
• 9.1 Sequence Segmentation

• 9.1.1 Evaluating Sequence Segmentation outputs

• 9.1.2 Sequence Labelling method for Sequence Segmentation

• 9.2 Discriminative Models for Sequence Segmentation

• 9.2.1 Word-Level Features for Word Segmentation

• 9.2.2 Exact Search Decoding Using Dynamic Program

• 9.2.3 Semi-Markov Conditional Random Fields

• 9.2.4 Large Margin Models

• 9.3 Perceptron and Beam Search

• 9.4 Summary

77

Beam Search

• Problems

• highest model score is not guaranteed to be found by the decoder.

• Solution

• adjust the training objective into the minimization of search errors.

• Merge model error and search error into one single objective.

78

Perceptron Training for Guiding Beam-
search Decoding
• Basic idea

• Use the current model parameter θ to decode training instances by beam search

• If the model makes a mistake, update θ

• Two types of updates

• At the 𝑖-th step, the gold local structure sequence 𝐺!:% falls out of agenda/beam

• The highest-scored output �𝑇!:# has a higher score compared with 𝐺!:#
• Update method

• Standard perceptron algorithm

• Mistake 1: 𝐺!:% (positive example), �𝑇!:% (negative example)

• Mistake 2: 𝐺!:# (positive example), �𝑇!:# (negative example)

79

Beam Search Training Algorithm

80

Beam Search Training Algorithm

81

Contents
• 9.1 Sequence Segmentation

• 9.1.1 Evaluating Sequence Segmentation outputs

• 9.1.2 Sequence Labelling method for Sequence Segmentation

• 9.2 Discriminative Models for Sequence Segmentation

• 9.2.1 Word-Level Features for Word Segmentation

• 9.2.2 Exact Search Decoding Using Dynamic Program

• 9.2.3 Semi-Markov Conditional Random Fields

• 9.2.4 Large Margin Models

• 9.3 Perceptron and Beam Search

• 9.4 Summary

82

Summary

• Sequence segmentation using Sequence Labeling

• Discriminative models for directly solving sequence segmentation tasks

• Semi-Markov Conditional Random Fields

• A learning guided beam search framework using perceptron training

